Abstract:
Systems and methods for monitoring operating conditions of a programmable device are disclosed. The system may include a root monitor configured to generate a reference voltage, a plurality of sensors distributed across the device, and a plurality of satellite monitors distributed across the device. Each of the satellite monitors may be coupled to a corresponding sensor via a local interconnect, and may be configured to convert analog signals generated by the sensor into digital data indicative of one or more operating conditions of an associated circuit. In some implementations, each satellite monitor may include a circuit to store a local reference voltage, an analog-to-digital converter (ADC) to convert the analog signals into digital codes, a calibration circuit to generate a correction factor indicative of errors in the digital codes, and a correction circuit to correct the digital codes based on the correction factor.
Abstract:
Systems and methods for monitoring a number of operating conditions of a programmable device are disclosed. In some implementations, the system may include a root monitor including circuitry configured to generate a reference voltage, a plurality of sensors and satellite monitors distributed across the programmable device, and a network-on-chip (NoC) interconnect system coupled to the root monitor and to each of the plurality of satellite monitors. Each of the satellite monitors may be in a vicinity of and coupled to a corresponding one of the plurality of sensors via a local interconnect.
Abstract:
An integrated circuit includes a reference voltage circuit. The reference voltage circuit includes a bipolar junction transistor (BJT) configured to receive a first current during a first phase of a clock cycle to generate a first base-emitter junction voltage, and receive a second current during a second phase of the clock cycle to generate a second base-emitter junction voltage. The reference voltage circuit includes a switched capacitor circuit configured to provide a reference voltage associated with the first base-emitter junction voltage and the second base-emitter junction voltage.
Abstract:
A system configured for detecting electrical overstress events within an integrated circuit includes a comparator configured to determine whether a monitored voltage level of a monitored signal exceeds an overstress reference voltage level. The overstress reference voltage level is a predetermined amount of voltage above a nominal voltage level for the monitored signal. The system further includes a write circuit coupled to an output of the comparator. The write circuit is configured to indicate an occurrence of an electrical overstress event within the integrated circuit responsive to the comparator determining that the monitored voltage level exceeds the overstress reference voltage level.
Abstract:
In an example, an apparatus includes an analog switch having an n-type metal oxide semiconductor (NMOS) circuit in parallel with a p-type metal oxide semiconductor (PMOS) circuit between a switch input and a switch output. The analog switch is responsive to an enable signal that determines switch state thereof. The NMOS circuit includes a switch N-channel transistor coupled to a buffer N-channel transistor, a gate of the switch N-channel transistor coupled to the enable signal and a gate of the buffer N-channel transistor coupled to a modulated N-channel gate voltage. The PMOS circuit including a switch P-channel transistor coupled to a buffer P-channel transistor, a gate of the switch P-channel transistor coupled to a complement of the enable signal and a gate of the buffer P-channel transistor coupled to a modulated P-channel gate voltage. A control circuit is coupled to the analog switch to provide the modulated N-channel and modulated P-channel gate voltages each of which alternates between a respective supply voltage and a respective gate induced drain leakage (GIDL) mitigation voltage based on the switch state.
Abstract:
A circuit for implementing a charge/discharge switch in an integrated circuit is described. The circuit comprises a supply bias path coupled to a first node, wherein the supply bias path provides a charging bias current to the first node; a charge transistor connected between the first node and a first terminal of a capacitor; a charge switch coupled between the first node and a ground potential, wherein the charge switch enables charging of the capacitor by way of the first node; a discharge transistor connected between the first terminal of the capacitor and a second node; a discharge switch coupled between the second node and a reference voltage, wherein the discharge switch enables discharging of the capacitor by way of the second node; and a ground bias path coupled between the second node and ground, wherein the ground bias path provides a discharging bias current to the second node. A method of implementing a charge/discharge switch in an integrated circuit is also described.
Abstract:
An apparatus relating generally to digital-to-analog conversion is disclosed. In such an apparatus, a digital-to-analog converter (“DAC”) device includes a source DAC and a sink DAC selectively coupled to one another. The source DAC provides a first bias to the sink DAC in a sink mode, and the sink DAC provides a second bias to the source DAC in a source mode.
Abstract:
Systems and methods for monitoring a number of operating conditions of a programmable device are disclosed. In some implementations, the system may include a root monitor including circuitry configured to generate a reference voltage, a plurality of sensors and satellite monitors distributed across the programmable device, and a network-on-chip (NoC) interconnect system coupled to the root monitor and to each of the plurality of satellite monitors. Each of the satellite monitors may be in a vicinity of and coupled to a corresponding one of the plurality of sensors via a local interconnect.
Abstract:
An example dynamic element matching (DEM) circuit includes: a plurality of bipolar junction transistors (BJTs), each of the plurality of BJTs having a base terminal and a collector terminal coupled to electrical ground; a plurality of pairs of force switches, each pair of force switches coupled to an emitter of a respective one of the plurality of BJTs; a plurality of pairs of sense switches, where each pair of sense switches is coupled to the emitter of a respective one of the plurality of BJTs, a first switch in each pair of sense switches is coupled to a first node, and a second switch in each pair of sense switches is coupled to a second node; a first current source coupled to a first switch in each pair of force switches; and a second current source coupled to a second switch in each pair of force switches.
Abstract:
An example voltage reference circuit includes: a reference circuit comprising a first circuit configured to generate a proportional-to-temperature current and corresponding first control voltage and a second circuit configured to generate a complementary-to-temperature current and corresponding second control voltage; a first current source coupled to a first load circuit, the first current source generating a sum current of the proportional-to-temperature current and the complementary-to-temperature current in response to the first and second control voltages, the first load circuit generating a zero temperature coefficient (Tempco) voltage from the sum current; and a second current source coupled to a second load circuit, the second current source generating the sum current of the proportional-to-temperature current and the complementary-to-temperature current in response to the first and second control voltages, the second load circuit generating a negative Tempco voltage from the sum current and the complementary-to-temperature current.