Abstract:
A circuit for controlling power within an integrated circuit comprises a plurality of circuit blocks; a global control signal routed within the integrated circuit; and a plurality of power control blocks. Each power control block is coupled to a corresponding circuit block of the plurality of circuit bocks and has a first input coupled to receive a reference voltage and a second input coupled to receive the global control signal. The global control signal enables, for each circuit block, the coupling of the reference voltage to the corresponding circuit block. A method of controlling power within an integrated circuit is also disclosed.
Abstract:
A system comprises a pair of configurable logic blocks (CLBs) placed adjacent to each other wherein each of the CLBs includes a plurality of configurable logic elements. A plurality sets of inodes are configured to accept signals to and/or from the CLBs, wherein a first set of inodes is positioned to the left of the adjacent CLBs and a second set of inodes is positioned to the right of the adjacent CLBs. A plurality of bnodes are embedded in the middle of the adjacent CLBs, wherein each bnode is configured to establish a first connection between the bnode and one of the first set of inodes on the left of the CLBs and a second connection between the bnode and one of the second set of inodes on the right of the CLBs. Both the first and second routing connections are localized within the pair of adjacent CLBs.
Abstract:
A circuit for controlling power within an integrated circuit comprises a plurality of circuit blocks; a global control signal routed within the integrated circuit; and a plurality of power control blocks. Each power control block is coupled to a corresponding circuit block of the plurality of circuit bocks and has a first input coupled to receive a reference voltage and a second input coupled to receive the global control signal. The global control signal enables, for each circuit block, the coupling of the reference voltage to the corresponding circuit block. A method of controlling power within an integrated circuit is also disclosed.
Abstract:
A memory cell includes a first inverter and a second inverter, wherein the first inverter and second inverter are cross-coupled using a storage node and an inverse storage node; a data node and an inverse data node, wherein the data node and inverse data node are next to a first side of the memory cell; and an address line controlling access to the storage node and the inverse storage node by the data and inverse data nodes; wherein the memory cell comprises a two gate pitch memory cell.
Abstract:
An apparatus includes an integrated circuit with a clock network in an array of circuit blocks. The clock network includes routing tracks, distribution spines, and clock leaves. The routing tracks and the distribution spines are bidirectional.
Abstract:
An apparatus includes an integrated circuit with a clock network in an array of circuit blocks. The clock network includes routing tracks, distribution spines, and clock leaves. The routing tracks and the distribution spines are bidirectional.