摘要:
A core of an optical waveguide and a core of a waveguide type optical device are adjacently disposed, and a layer is continuously formed at one end of the core of the waveguide type optical device, wherein an effective refractive index of the layer decreases toward a long axis direction of the optical waveguide stripe.
摘要:
An optical module providing higher reliability during high-speed light modulation and a lower bit error rate when built into a transmitter (transceiver). An optical module contains a taper mirror for surface emission of output light, an optical modulator device, and an optical modulation drive circuit, and the optical modulator device and the optical modulation drive circuit are mounted at positions so as to enclose the taper mirror.
摘要:
To provide an optical transceiver module comprising an optical prism for optical communications which has mounting portions, a light emitting portion, light receiving portions, a substrate and a sub-mount that are used as the basis of the optical transceiver module, whose configuration is compact with reduced components which are accurately mounted.A sub-mount is provided on the substrate. The composite optical prism is formed with an optical lens provided with mounting supports and a wavelength division film in an integrated fashion. By using marks on the sub-mount for alignment, the composite optical prism can be mounted accurately on the sub-mount. In addition, the light receiving portions and the light emitting portion can be mounted accurately by using marks for alignment provided on the substrate and the sub-mount.
摘要:
Plural p-n junctions are formed in a waveguide such that they have junction interfaces in a normal direction to a surface of a substrate (to an extending direction of the substrate). Accordingly, a doping concentration changes in only a horizontal direction in the substrate, and it is possible to fabricate using the same processes as those for silicon electronic devices and to perform device fabricating at a low cost. Moreover, two or more junction interfaces are formed in the waveguide and thus an occupied area of the waveguide in a refractive index modulation region expands. Therefore, the efficiency of the refractive index modulation can be improved and a low-voltage operation is possible.
摘要:
A core of an optical waveguide and a core of a waveguide type optical device are adjacently disposed, and a layer is continuously formed at one end of the core of the waveguide type optical device, wherein an effective refractive index of the layer decreases toward a long axis direction of the optical waveguide stripe.
摘要:
In the optical waveguide board, simultaneously with pattern formation of mirror members at arbitrary positions on a clad layer 11, guiding patterns 14 having convex shapes are formed respectively at arbitrary positions on peripheral parts of mirror patterns 13, and the mirror patterns 13 are worked into tapered shapes. Next, in a state that a mask member 100 having through holes at desired positions, and the guiding patterns 14 are guided by mating, a metal film is formed on surfaces of slope parts 22 of the mirror patterns and the guiding patterns 14. Furthermore, in a state that the guiding patterns 14 and the photomask 16 are guided, wiring core patterns 20 are formed on the clad layer 11 adjacent to the mirror patterns 13.
摘要:
To provide an optical transceiver module comprising an optical prism for optical communications which has mounting portions, a light emitting portion, light receiving portions, a substrate and a sub-mount that are used as the basis of the optical transceiver module, whose configuration is compact with reduced components which are accurately mounted.A sub-mount is provided on the substrate. The composite optical prism is formed with an optical lens provided with mounting supports and a wavelength division film in an integrated fashion. By using marks on the sub-mount for alignment, the composite optical prism can be mounted accurately on the sub-mount. In addition, the light receiving portions and the light emitting portion can be mounted accurately by using marks for alignment provided on the substrate and the sub-mount.
摘要:
The optical module includes an optical device mounting substrate 1 and an optical multiplexer/demultiplexer 2. One laser diode and at least one photodetector, which are positioned in the same plane, are mounted on the optical device mounting substrate 1. The optical multiplexer/demultiplexer is prepared by mounting a wavelength-selective filter and a mirror on the front and back surfaces of a transparent substrate. The optical device mounting substrate and the optical multiplexer/demultiplexer are mounted in a package 3 in such a manner that the optical device mounting surface and the filter surface are not parallel to each other. The optical module also includes a first lens, which is positioned near the laser diode or monolithically integrated with the laser diode, and a second lens, which converges light coming out of the optical multiplexer/demultiplexer toward an optical fiber.
摘要:
The optical module includes an optical device mounting substrate 1 and an optical multiplexer/demultiplexer 2. One laser diode and at least one photodetector, which are positioned in the same plane, are mounted on the optical device mounting substrate 1. The optical multiplexer/demultiplexer is prepared by mounting a wavelength-selective filter and a mirror on the front and back surfaces of a transparent substrate. The optical device mounting substrate and the optical multiplexer/demultiplexer are mounted in a package 3 in such a manner that the optical device mounting surface and the filter surface are not parallel to each other. The optical module also includes a first lens, which is positioned near the laser diode or monolithically integrated with the laser diode, and a second lens, which converges light coming out of the optical multiplexer/demultiplexer toward an optical fiber.
摘要:
When a signal of weak optical power is received immediately after a signal of intense optical power, input of the signal of intense optical power readily causes saturation, and the influence interferes in the signal of weak optical power to deteriorate receiver sensitivity. Moreover, when a reverse-bias voltage of APD is changed, if a difference between the voltages is large, a next optical signal is received until the receiver sensitivity of the APD becomes stable, so that receiver sensitivity deteriorates. A DBA order is determined so that a difference in reverse-bias voltage is small, and reverse-bias voltage is controlled in line with reception timing from ONU.