Abstract:
A floating gate with multiple tips and a fabrication method thereof. A semiconductor substrate is provided, on which a patterned hard mask layer is formed, wherein the patterned hard mask layer has an opening. A gate dielectric layer and a first conducting layer with a first predetermined thickness are formed on the bottom of the opening. A spacer is formed on the sidewall of the opening. A conducting spacer is formed on the sidewall of the spacer. The first conducting layer is etched to a second predetermined thickness. A multi-tip floating gate is provided by the first conducting layer and the conducting spacer. A protecting layer is formed in the opening. The patterned hard mask layer, the gate dielectric layer, a portion of the protecting layer, and a portion of the first spacer are etched to expose the surface of the first conducting layer.
Abstract:
A stacked gate vertical flash memory and a fabrication method thereof. The stacked gate vertical flash memory comprises a semiconductor substrate with a trench, a source conducting layer formed on the bottom of the trench, an insulating layer formed on the source conducting layer, a gate dielectric layer formed on a sidewall of the trench, a conducting spacer covering the gate dielectric layer as a floating gate, an inter-gate dielectric layer covering the conducting spacer, and a control gate conducting layer filled in the trench.
Abstract:
A vertical DRAM and fabrication method thereof. The vertical DRAM has a plurality of memory cells on a substrate, and each of the memory cells has a trench capacitor, a vertical transistor, and a source-isolation oxide layer in a deep trench. The main advantage of the present invention is to form an annular source diffusion and an annular drain diffusion of the vertical transistor around the sidewall of the deep trench. As a result, when a gate of the transistor is turned on, an annular gate channel is provided. The width of the gate channel of the present invention is therefore increased.
Abstract:
A stacked gate vertical flash memory and a fabrication method thereof. The stacked gate vertical flash memory comprises a semiconductor substrate with a trench, a source conducting layer formed on the bottom of the trench, an insulating layer formed on the source conducting layer, a gate dielectric layer formed on a sidewall of the trench, a conducting spacer covering the gate dielectric layer as a floating gate, an inter-gate dielectric layer covering the conducting spacer, and a control gate conducting layer filled in the trench.
Abstract:
The present invention discloses a multi-bit stacked-type non-volatile memory having a spacer-shaped floating gate and a manufacturing method thereof. The manufacturing method includes forming a patterned dielectric layer containing arsenic on a semiconductor substrate, wherein the patterned dielectric layer defines an opening as an active area. A dielectric spacer is formed on a side wall of the patterned dielectric layer and a gate dielectric layer is formed on the semiconductor substrate. A source/drain region is formed by thermal driving method making arsenic diffusion from the patterned dielectric layer into the semiconductor substrate. A spacer-shaped floating gate is formed on the side wall of the dielectric spacer and the gate dielectric layer. An interlayer dielectric layer is formed on the spacer-shaped floating gate. A control gate is formed on the interlayer dielectric layer and fills the opening of the active area.
Abstract:
The present invention discloses a multi-bit stacked-type non-volatile memory having a spacer-shaped floating gate and a manufacturing method thereof. The manufacturing method includes forming a patterned dielectric layer containing arsenic on a semiconductor substrate, wherein the patterned dielectric layer defines an opening as an active area. A dielectric spacer is formed on a side wall of the patterned dielectric layer and a gate dielectric layer is formed on the semiconductor substrate. A source/drain region is formed by thermal driving method making arsenic diffusion from the patterned dielectric layer into the semiconductor substrate. A spacer-shaped floating gate is formed on the side wall of the dielectric spacer and the gate dielectric layer. An interlayer dielectric layer is formed on the spacer-shaped floating gate. A control gate is formed on the interlayer dielectric layer and fills the opening of the active area.
Abstract:
A vertical DRAM and fabrication method thereof. The vertical DRAM has a plurality of memory cells on a substrate, and each of the memory cells has a trench capacitor, a vertical transistor, and a source-isolation oxide layer in a deep trench. The main advantage of the present invention is to form an annular source diffusion and an annular drain diffusion of the vertical transistor around the sidewall of the deep trench. As a result, when a gate of the transistor is turned on, an annular gate channel is provided. The width of the gate channel of the present invention is therefore increased.
Abstract:
The present invention discloses a multi-bit stacked-type non-volatile memory having a spacer-shaped floating gate and a manufacturing method thereof. The manufacturing method includes forming a patterned dielectric layer containing arsenic on a semiconductor substrate, wherein the patterned dielectric layer defines an opening as an active area. A dielectric spacer is formed on a side wall of the patterned dielectric layer and a gate dielectric layer is formed on the semiconductor substrate. A source/drain region is formed by thermal driving method making arsenic diffusion from the patterned dielectric layer into the semiconductor substrate. A spacer-shaped floating gate is formed on the side wall of the dielectric spacer and the gate dielectric layer. An interlayer dielectric layer is formed on the spacer-shaped floating gate. A control gate is formed on the interlayer dielectric layer and fills the opening of the active area.
Abstract:
A method for fabricating the memory structure includes: providing a substrate having a pad, forming an opening in the pad, forming a first spacer on a sidewall of the opening, filling the opening with a sacrificial layer, removing the first spacer and exposing a portion of the substrate, removing the exposed substrate to define a first trench and a second trench, removing the sacrificial layer to expose a surface of the substrate to function as a channel region, forming a first dielectric layer on a surface of the first trench, a surface of the second trench and a surface of the channel region, filling the first trench and the second trench with a first conductive layer, forming a second dielectric layer on a surface of the first conductive layer and the surface of the channel region, filling the opening with a second conductive layer, and removing the pad.
Abstract:
The invention provides a dynamic random access memory (DRAM) with an electrostatic discharge (ESD) region. The upper portion of the ESD plug is metal, and the lower portion of the ESD plug is polysilicon. This structure may improve the mechanical strength of the ESD region and enhance thermal conductivity from electrostatic discharging. In addition, the contact area between the ESD plugs and the substrate can be reduced without increasing aspect ratio of the ESD plugs. The described structure is completed by a low critical dimension controlled patterned photoresist, such that the processes and equipments are substantially maintained without changing by a wide margin.