摘要:
An optical fiber of a bundled fiber light source is an optical fiber whose core diameter is uniform but whose emission end cladding diameter is smaller than an incidence end cladding diameter thereof, and a light emission region thereof is made smaller. An angle of luminous flux from this higher luminance bundled fiber light source, which passes through a lens system and is incident on a DMD, is smaller, i.e., an illumination NA is made smaller. Thus, an angle of flux which is incident on a surface that is to be exposed is smaller. That is, a minute image formation beam can be obtained without increasing the image formation NA, focal depth is lengthen.
摘要:
An optical fiber of a bundled fiber light source is an optical fiber whose core diameter is uniform but whose emission end cladding diameter is smaller than an incidence end cladding diameter thereof, and a light emission region thereof is made smaller. An angle of luminous flux from this higher luminance bundled fiber light source, which passes through a lens system and is incident on a DMD, is smaller, i.e., an illumination NA is made smaller. Thus, an angle of flux which is incident on a surface that is to be exposed is smaller. That is, a minute image formation beam can be obtained without increasing the image formation NA, focal depth is lengthen.
摘要:
In an exposure apparatus of the invention, for a spatial light modulator, each of a plurality of pixel portions fewer than the total number of the pixel portions is controlled with a control signal generated according to exposure information. Namely, a part of the pixel portions is controlled without controlling a whole of the pixel portions on the substrate. Thus, the number of pixels in the pixel portions is described, and transfer time of the control signal becomes short. This enables modulation speed of the laser beam to be increased and the high-speed exposure to be performed. An incorporated laser light source, in which the laser beams are incorporated and struck on the optical fiber, is preferable to the laser device. By adopting the incorporated laser light source, high brightness and high output can be obtained, and it is preferable to the exposure of the spatial light modulator. Since the fiber array is obtained with few optical fibers, it is low cost Since the number of optical fibers is few, the light-emitting region is further decreased when the optical fibers are arrayed.
摘要:
An optical fiber of a bundled fiber light source is an optical fiber whose core diameter is uniform but whose emission end cladding diameter is smaller than an incidence end cladding diameter thereof, and a light emission region thereof is made smaller. An angle of luminous flux from this higher luminance bundled fiber light source, which passes through a lens system and is incident on a DMD, is smaller, i.e., an illumination NA is made smaller. Thus, an angle of flux which is incident on a surface that is to be exposed is smaller. That is, a minute image formation beam can be obtained without increasing the image formation NA, focal depth is lengthen.
摘要:
In an exposure apparatus of the invention, for a spatial light modulator, each of a plurality of pixel portions fewer than the total number of the pixel portions is controlled with a control signal generated according to exposure information. Namely, a part of the pixel portions is controlled without controlling a whole of the pixel portions on the substrate. Thus, the number of pixels in the pixel portions is decreased, and transfer time of the control signal becomes short. This enables modulation speed of the laser beam to be increased and the high-speed exposure to be performed. An incorporated laser light source, in which the laser beams are incorporated and struck on the optical fiber, is preferable to the laser device. By adopting the incorporated laser light source, high brightness and high output can be obtained, and it is preferable to the exposure of the spatial light modulator. Since the fiber array is obtained with few optical fibers, it is low cost. Since the number of optical fibers is few, the light-emitting region is further decreased when the optical fibers are arrayed.
摘要:
Provided are an optical correcting system which can form a linear image or illuminating light having a substantially uniform light intensity distribution without reducing the efficiency of use of light, and an exposure head which can perform excellent exposure by using the linear image or the illuminating light. Light flux from a light source is collimated by the function of a collimator lens, and the collimated light flux enters into an optical correcting system for correcting light intensity distribution. The optical correcting system for correcting light intensity distribution changes the width of the light flux at the exit position at which each collimated light flux exits so that the light intensity distribution of a linear image is uniform when the collimated light flux is formed into the linear image. A change of the widths of the light flux allows utilizing the light flux at the midsection generally having a high light intensity distribution for the peripheral having an insufficient light intensity, thereby uniformalizing the light intensity distribution of the linear image without reducing the efficiency of use of light as a whole.
摘要:
A laser annealer has a laser light source with at least one GaN-type semiconductor laser and is configured so as to form emission points that emit laser beams having a wavelength of 350 to 450 nm, and a scanning device for scanning an annealing surface with the laser beams. The laser annealer may have a spatial light modulator for modulating the laser beams, and in which pixel portions whose light modulating states change in accordance with control signals are arranged on a substrate. The invention is applied to a laser thin-film forming apparatus. The apparatus has a laser source that has at least one semiconductor laser and is configured so as to form emission points, and an optical system for focusing laser beams into a single beam in the width direction of a substrate.
摘要:
A condensing lens is integrally formed with collimator-lens portions which respectively collimate light beams and a condensing lens portion which makes the collimated light beams converge at a common point. In addition, an optically-multiplexed-laser-light source is constituted by semiconductor lasers, a multimode optical fiber, and the above condensing lens, where the collimator-lens portions in the condensing lens are respectively arranged in correspondence with the semiconductor lasers, and the condensing lens portion couples the light beams collimated by the collimator-lens portions, to the multimode optical fiber.
摘要:
In a surveillance camera 2, an optical system unit for use in imaging is provided with a first lens 7, a second lens 8, a third lens 9, and a fourth lens 10, and a subject image is formed on a photoelectric surface 12 of an imaging element through a cover glass 11. The third lens 9 is an optical lens made of a nanocomposite material of the invention in which inorganic fine particles are dispersed. A thin film layer 15 that blocks UV rays is formed on a light incident surface of the third lens 9. After passing through the first lens 7 and the second lens 8, UV rays contained in subject light are blocked by the thin film layer 15 and therefore cannot enter the third lens 9.
摘要:
An objective optical system includes a diffractive optical element on the light source side of an objective lens for focusing incident light of three different wavelengths with two different numerical apertures onto three different optical recording media. The diffractive optical element is formed of two lens elements made of different materials that are cemented together at a diffractive surface. Three conditions are satisfied so as to achieve optimum imaging. The diffractive surface may be shaped so that the order of the diffracted light of the shortest wavelength λ2 having the largest diffracted intensity is different from the order of the diffracted light of the second wavelength λ2 having the largest diffracted intensity, and the order of the diffracted light of the first wavelength λ1 having the largest diffracted intensity is also different from the order of the diffracted light of the third wavelength λ3 having the largest diffracted intensity.