Abstract:
A system for supplementing communications capabilities of a patient monitoring device, the system including an interface device configured to communicably couple with and to receive the patient monitoring information from the patient monitoring device, a memory device hosted by the interface device and configured to store at least a portion of the patient monitoring information, a wireless transceiver hosted by the interface device, a database hosted by the interface device; and a processor communicably coupled to the wireless transceiver and the asset management database, the processor configured to format the patient monitoring information into one or more data objects, each of the one or more data objects associated with an EMS incident during which the patient monitoring information was gathered, the processor further configured to store the one or more data objects to the database and to transmit the one or more data objects with the wireless transceiver.
Abstract:
Among other things, we describe a system that includes a first medical device for treating a patient at an emergency care scene, the first medical device including a processor and a memory configured to detect a request for a connection between the first medical device and a second medical device for treating the patient at the emergency care scene, the request for connection including an identifier of the second medical device, responsive to receiving the request for connection, enabling a wireless communication channel to be established between the first medical device and the second medical device based on the identifier of the second medical device and an identifier of the first medical device; and enabling transmission and/or exchange of patient data between the first medical device and the second medical device via the wireless communication channel. Such communications with more than two devices may also be possible.
Abstract:
Systems and methods of providing life support are provided. A life support system includes a first life support device that has a control unit and is configured to apply a life support protocol to a subject. The first life support device also includes a memory unit that can store life support protocol information, and the control unit can provide the life support protocol information to a second life support device. The control unit can also receive operating instructions from the second life support device based on the life support protocol information, and can implement the operating instructions.
Abstract:
A method of analyzing a physiological (e.g., an ECG) signal during application of chest compressions. The method includes acquiring a physiological signal during application of chest compressions; acquiring the output of a sensor from which information on the velocity of chest compressions can be determined; and using the information on the velocity to reduce at least one signal artifact in the physiological signal resulting from the chest compressions.
Abstract:
An external defibrillator system is provided. The system includes: a graphical display; one or more sensors for obtaining data regarding chest compressions performed on a patient; and a controller configured to display on the graphical display numeric values for depth and/or rate of the chest compressions based upon the data from the one or more sensors. A method for using an external defibrillator including the steps of: obtaining data regarding chest compressions performed on a patient; and displaying on a graphical display screen of the defibrillator numeric values for depth and/or rate of the chest compressions based upon the data is also provided.
Abstract:
An apparatus includes a computing device that includes a memory configured to store instructions. The computing device also includes a processor to execute the instructions to perform operations that include receiving a signal representative of electrical impedance in a chest of a patient, and, receiving a signal representative of the motion of chest compressions performed on the patient during a cardiopulmonary resuscitation (CPR) treatment. The operations also include processing the received signal representative of the motion of chest compressions to determine one or more characteristics of the motion, and, processing the received signal representative of the electrical impedance to determine parameters relevant to a production of a signal representative of airflow activities of the patient. Operations also include modifying the one or more determined parameters based on the one or more determined characteristics of the motion to produce the signal representative of airflow activities of the patient.
Abstract:
A device for assisting a rescuer in delivering therapy to an adult or pediatric patient, the device including a user interface comprising a display and/or audio speakers, the user interface being configured to deliver prompts to a rescuer to assist the rescuer in delivering therapy to a patient; a processor configured to provide prompts to the user interface and to perform an ECG analysis algorithm on ECG information detected from the patient; at least one detection element configured to determine without rescuer input via the user interface that a pediatric patient is being treated; wherein, if a pediatric patient is detected, the processor modifies the ECG analysis algorithm or the prompts provided to the user interface to use an ECG analysis algorithm or prompts adapted for a pediatric patient rather than for an adult patient.
Abstract:
A method of automatically determining which type of treatment is most appropriate for a cardiac arrest victim, the method comprising transforming one or more time domain electrocardiogram (ECG) signals into a frequency domain representation comprising a plurality of discrete frequency bands, combining the discrete frequency bands into a plurality of analysis bands, wherein there are fewer analysis bands than discrete frequency bands, determining the content of the analysis bands, and determining the type of treatment based on the content of the analysis bands.
Abstract:
A remote interface system according to some embodiments includes one or more patient monitoring devices having one or more sensors for patient monitoring, one or more first processors to receive information from the sensors and generate patient data based thereon, a web server, a first communication system, and a first screen to display a representation of at least a first portion of the patient data, and a remote interface device including a second communication system, a second screen, one or more second processors, an application executed by the one or more second processors and configured to detect a presence of the first communication system, establish a communication link between the first and second communication systems, establish a reliable connection channel (e.g. secure websocket connection) with the web server, receive the patient data via the connection, and display at least a second portion of the patient data on the second screen.
Abstract:
A flow sensor system for ventilation treatment comprises a flow conduit configured to allow gas flow between a first region and a second region, the flow conduit defining a lumen for the gas flow; a flow restrictor disposed within the lumen of the flow conduit between the first region and the second region; a first absolute pressure sensor disposed adjacent to the first region of the flow conduit and configured to measure a pressure of the gas flow at the first region of the flow conduit; and a second absolute pressure sensor disposed adjacent to the second region of the flow conduit and configured to measure pressure of the gas flow at the second region of the flow conduit.