Abstract:
A method of testing the integrity of a filter element in a falter assembly includes a) wetting filter material of a filter element having an inlet side and an outlet side connected to an outlet conduit, b) subjecting the inlet side of the filter element to a gas pressure, c) measuring the pressure in the outlet conduit as a function of time, with a downstream outlet valve for the outlet conduit being closed, and d) determining whether the pressure measured at a preselected time exceeds a reference pressure by a predetermined amount, or determining whether the time required to reach a preselected pressure is shorter than a reference time by a predetermined amount.
Abstract:
A method and apparatus for automatically propelling a charge of backwash fluid by a compressed gas such as steam to backwash a filter in a filter pair. The method and apparatus provides for backwashing a filter with at least three backwash phases, a first mainly comprising a charge of backwash fluid passing through the filter with significant speed, a second relating to use of flashing steam for secondary cleaning and scrubbing of the filter elements, and a third relating to use of low pressure steam for autoclaving and sterilizing the filter.
Abstract:
A method of improving the operation of filters of the type used to filter cooling water which is used intermittently in direct heat exchange relationship to cool large office buildings and similar structures, which method comprises maintaining the filters when not in use in contact with an aqueous solution which contains a preservative amount of an industrial biocide. Also shown is a method of controlling microorganisms in the filters by using a biocide with the backwash water.
Abstract:
Virus and microbe-killing, self-sterilizing resistive heated air filters and methods of making and using same methods. The air filter is includes laser-induced graphene (LIG), a porous conductive graphene foam formed through photothermal conversion of a polyimide film (or another source or source of polymer or other LIG precursor material) by a laser source. The LIG in the air filter can capture particulates and bacteria. The bacteria cannot proliferate even when submerged in culture medium. Through a periodic Joule-heating mechanism, the filter easily reaches greater than 300° C. This destroys any microorganisms including bacteria, along with molecules that can cause adverse biological reactions and diseases such as viruses, pyrogens, allergens, exotoxins, endotoxins, teichoic acids, mycotoxins, nucleic acids, and prions
Abstract:
A potable water system (10) comprises a supply line (18) and a water-purification device (20) incorporated thereinto. The water-purification device (20) comprises a microorganism filter (40) having a housing (42) and replaceable cartridge (42). The cartridge's filter media (50) includes a microorganism-capturing membrane (e.g., comprising an electropositive material) and a microorganism-killing membrane (e.g., comprising a biocidal material).
Abstract:
The invention relates to a filter installation, especially a seawater filter installation, comprising at least one fluid line (18,20) for transporting a biological fluid, a filter device (54) which is mounted in said fluid line and comprises at least one filter element (22) in a filter housing (10), and means for biological decontamination. The fact that the means for biological decontamination contain active substances that can be introduced into the filter housing (10), such as inert gases or special metals, ensures that toxic impurities cannot enter and the active substances used are ecofriendly unlike chemically produced fungicides and herbicides. The invention also relates to a method for operating said filter installation.
Abstract:
A filter assembly may include a valve which includes a valve member. The valve member moves between a first position and a second position and the valve is opened and closed.
Abstract:
A filter assembly may include a valve which includes a valve member and a sleeve. The valve member moves between a first position and a second position in response to rotation of the sleeve.
Abstract:
There is disclosed a water treatment appliance, particularly for on-the-counter treatment of potable water. The appliance comprises: a base unit comprising a pump, a housing and a cooling unit for chilling water in the housing; a removable water reservoir engageable with the housing; a control panel comprising a water dispensing switch; an outlet for dispensing treated water from the fluid treatment system; and a treatment cartridge removably disposed in the housing. The treatment cartridge comprises a first chamber and a second chamber in communication with one another. The first chamber is in communication with the housing and has disposed therein a filter element. The second chamber is in communication with the outlet and has disposed therein an ultraviolet radiation lamp.
Abstract:
Each cap of a pair of end caps mounted on opposed ends of a conventional radial flow cylindrical filter element of a filter cartridge includes a circular sleeve extending axially from the filter element for penetrably receiving a supporting stud and for maintaining an O-ring seal therebetween. The area of one of the end caps radially outwardly of its circular sleeve is greater than the corresponding area of the other end cap to cause fluid to be filtered to pressure bias the filter cartridge toward the other end cap and to positionally retain the filter cartridge within its housing. A positioning member extending into the filter element from one of the end caps receives and stabilizes sleeve for a u/v lamp disposed within the filter element to kill any microorganisms present and to oxidize any organic matter subjected to the emitted ultra-violent radiation.