Abstract:
Apparatus for removing volatile contaminant compounds from a liquid by sparging a cleaning gas therethrough comprises a volatile contaminant extraction assembly including a hollow porous tube surrounded by an outer jacket defining a gas plenum between the jacket and the porous tube; a contaminated liquid feed assembly including a nozzle for injecting liquid into the porous tube in a spiraling flow pattern around and along the porous tube; a gas-liquid separator assembly including a nonporous degassing tube coaxially aligned with and connected to the porous tube, a separator tube coaxially aligned with and connected to the degassing tube and flaring outwardly in diameter from the degassing tube, and a gas duct coaxially aligned with the separator tube and extending into the separator tube to collect and convey cleaning gas therefrom; a clean liquid collection assembly; and a gas discharge assembly. A method of removing volatile contaminants from a liquid comprises the general steps of introducing a stream of contaminated liquid to the hollow interior of a cylindrical porous tub in a thin film following a spiral flow pattern around and along the wall of the tube; controlling the physical characteristics of the liquid film and the flow pattern followed by the film through the tube; sparging cleaning gas through the wall of the tube and into the liquid film at a preselected flow rate; segregating contaminant laden cleaning gas from the liquid within the tube; and separating the cleaned liquid stream from the contaminant laden gas stream.
Abstract:
A method of producing uniform inorganic microspheres with a particle size of 0.01 to 500 .mu.m by injecting an aqueous solution containing a particle-forming material into an organic solvent. The method includes injecting the aqueous solution into the organic solvent through a macromolecular membrane having a hydrophobic surface and having pores substantially uniform in pore size and extending in the direction of thickness of the membrane, substantially straight through the membrane, so that a path length of each of the pores corresponds substantially to a thickness of the membrane, to form, in said organic solvent, a large number of emulsion particles substantially uniform in size and then producing uniform inorganic microspheres from said emulsion particles on a one emulsion particle-to-one microsphere basis. The pores in the membrane are formed by either a corpuscular or laser beam.
Abstract:
An oxidation reactor having elongated shape includes in combination, a mixing member including a pipe for feeding oxidizing gas and a pipe for feeding oxidizable charge; a reaction member, arranged subjacent the mixing member, and a discharge member associated with a discharge pipe for the products of the reaction. The reaction member includes a central zone which has a first lining and the reactor includes at least one peripheral zone which has a second lining, passages in the second lining being smaller than passages in the first lining so that the pressure loss in the second lining is greater than that of the first lining. The second lining forms a sleeve surround the first lining and this sleeve is formed of at least one refractory heat insulating material. The oxidation reactor is provided with an external sleeve steel jacket, a concrete wall and a steel element surrounding the mixing member arranged above the reaction member. The reaction member includes a series of single elements which form juxtaposed channels.
Abstract:
The element is disposed in a vessel receiving a fluid flow. The vessel wall is porous at least for a proportion of the fluid and bounds an inner chamber communicating through the vessel wall with a chamber outside the vessel. The element is in the shape of a plate or tube and is so devised that the porous wall either on its own or in combination with other similarly shaped elements to form a module, forms a turbulence generator particularly in the form of a static mixer for the fluid flow. The resulting turbulence on the wall of the elements ensures that the wall remains porous.
Abstract:
An agitated liquid reactor whose fluid is recirculated from an outlet through a porous wall structure. Recirculation is effected through a conduit having a flexible conduit portion which is periodically compressed toward the porous wall structure.
Abstract:
A PROCESS FOR THE PREPARATION OF HIGH MOLECULAR WEIGHT POLYMER BY CONDENSATION PROCESS OF A LIQUID REACTION MIXTURE WHEREIN AT LEAST ONE VOLATILE BY-PRODUCT IS ELIMINATED, CHARACTERIZED IN THAT SAID CONDENSATION PROCESS IS CARRIED OUT IN APPARATUS OF SUCH FORM AND SO OPERATED THAT SAID REACTION MIXTURE BEING SUBJECTED TO THE CONDENSATION PROCESS HAS NO FREE SURFACE AND REMOVAL OF VOLATILE PRODUCT OR PRODUCTS FROM SAID REACTION MIXTURE IS EFFECTED BY DIFFUSION THROUGH AT LEAST A PROPORTION OF THE WALL OF SAID APPARATUS WHICH IS PERMEABLE TO SAID VOLATILE PRODUCT OR PRODUCTS BUT NOT PERMEABLE TO SAID REACTION MIXTURE OR SAID POLYMER, SAID PROPORTION OF THE WALL WHICH IS PERMEABLE SERVING TO SEPARATE SAID REACTION MIXTURE FROM A CHEMICALLY INERT GASEOUS FLUID IN WHICH THE PARTIAL PRESSURE OF THE VOLATILE BY-PRODUCT, OR OF THE VOLATILE BY-PRODUCTS, IS CONTINUALLY MAINTAINED BELOW THE EQUILIBRIUM PARTIAL PRESSURE FOR THE REACTION MIXTURE UNDER THE CONDITIONS OF REACTION.
Abstract:
A device and method for increasing the mass transport rate of a chemical or electrochemical process at the solid and fluid interface in a fluid cell. The device includes a membrane in close contact with surface of the work piece, to separate the process cell into two chambers, so that fluid velocity at the work piece is controlled separately from the main cell flow. Thus the diffusion boundary layer is controlled and minimized by the rate that fluid is withdrawn from the work piece chamber.
Abstract:
Fuel supplies for fuel cells are disclosed. The fuel supplies can be a pressurized or non-pressurized cartridge that can be used with any fuel cells, including but not limited to, direct methanol fuel cell or reformer fuel cell. In one aspect, a fuel supply may contain a reaction chamber to convert fuel to hydrogen. The fuel supplies may also contain a pump. The fuel supply may have a valve connecting the fuel to the fuel cell, and a vent to vent gas from the fuel supply. Methods for forming various fuel supplies are also disclosed.