Abstract:
This invention relates to thermoplastic interlayer sheets or films for laminated safety glass with superior vacuum de-airing at elevated temperatures and superior tacking and edge sealing properties. The sheeting has an embossed surface pattern on at least one of the surfaces, which provides relatively uninterrupted channels for de-airing in at least two non-parallel directions, wherein the channels are spaced about 0.1 to about 1 mm apart and have a depth of less than about 25 μm and a width of about 30 to about 300 μm.
Abstract:
There are disclosed an information recording medium substrate having a surface roughness of Rmax 15 nm or less, and an information recording medium, particularly an information recording medium substrate and information recording medium in which for surfaces of the substrate and medium, a bearing area value (offset bearing area value) in a depth of 0.5 to 5 nm (predetermined slice level) from a bearing height (real peak height) corresponding to the bearing area value of 0.2% to 1.0% is 90% or less, and a manufacture method of the substrate and medium.
Abstract:
A laminated glazing panel (10) has at least one sheet of glass having a thickness of between 0.8 mm and 3.5 mm. The glass sheet has: a) an edge compression stress of between 20 MPa and 90 MPa; and b) a surface compressive stress at a central portion of the glass of between 2 MPa and 39 MPa. The glazing panel may be used as a laminated automotive glazing. A method of manufacturing a laminated glazing panel is also disclosed, comprising individually bending two sheets of glass and subsequently assembling and laminating the two sheets of glass together.
Abstract:
This invention relates to a method of making a laminated window such as a vehicle windshield. At least one of the two glass substrates of the window is ion beam milled prior to heat treatment and lamination. As a result, defects in the resulting window and/or haze may be reduced.
Abstract:
An automotive transparency includes a first glass ply having a constant thickness, a second glass ply having a constant thickness, and an interlayer having a constant thickness in a first predetermined area and a decreasing thickness in a second predetermined area. The first and second plies are secured together by the interlayer to form a laminate having a first outer major surface, an opposing second outer major surface, a first predetermined area defined by the first predetermined area of the interlayer over which the outer major surfaces are substantially parallel to one another, and a second predetermined area defined by the second predetermined area of the interlayer over which the outer major surfaces are nonparallel to each other such that images reflected off the nonparallel surfaces of the laminate are substantially superimposed over each other to at least reduce double imaging of the reflected image.
Abstract:
A windshield of a laminated glass curved to protrude toward the vehicle outside. An interlayer of the laminated glass is tensioned so that the windshield has a force acting to cause the entire laminated glass to flex toward a passenger compartment. The windshield is configured in its entirety to be flexible toward the inside of the passenger compartment, so that the impact of an object colliding with the windshield from the vehicle outside can be absorbed and impact received by the colliding object can be mitigated.
Abstract:
A polymer sheet having a bifunctional surface modifying agent deposited on the surface of the sheet and a method of manufacturing a polymer sheet having a bifunctional surface modifying agent on the surface of the sheet. The polymer sheet preferably comprises polyvinyl butyral, a plasticizer incorporated into the polyvinyl butyral, and a bifunctional surface modifying agent disposed as a coating on the plasticized polyvinyl butyral, the bifunctional surface modifying agent comprising an anti-blocking segment and a compatibility segment, the anti-blocking segment comprising a hydrocarbon group comprising a linear hydrocarbon chain, a cyclic group, or a combination of linear hydrocarbon chains and cyclic groups, the compatibility segment comprising a sulfonate, sulfate, carboxylate, or phosphate radical. A method of manufacturing a polymer sheet comprises disposing a bifunctional surface modifying agent onto said polymer sheet surface, the bifunctional surface modifying agent comprising an anti-blocking segment and a compatibility segment comprising a sulfonate, sulfate, carboxylate, or phosphate radical.
Abstract:
This invention relates to a method of making a window (e.g., vehicle windshield, architectural window, etc.), and the resulting window product. At least one glass substrate of the window is ion beam treated and/or milled prior to application of a coating (e.g., sputter coated coating) over the treated/milled substrate surface and/or prior to heat treatment. As a result, defects in the resulting window and/or haze may be reduced. The ion beam used in certain embodiments may be diffused. In certain embodiments, the ion beam treating and/or milling is carried out using a fluorine (F) inclusive gas(es) and/or argon/oxygen gas(es) at the ion source(s). In certain optional embodiments, F may be subimplanted into to treated/milled glass surface for the purpose of reducing Na migration to the glass surface during heat treatment or thereafter, thereby enabling corrosion and/or stains to be reduced for long periods of time.
Abstract:
There are disclosed an information recording medium substrate having a surface roughness of Rmax 15 nm or less, and an information recording medium, particularly an information recording medium substrate and information recording medium in which for surfaces of the substrate and medium, a bearing area value (offset bearing area value) in a depth of 0.5 to 5 nm (predetermined slice level) from a bearing height (real peak height) corresponding to the bearing area value of 0.2% to 1.0% is 90% or less, and a manufacture method of the substrate and medium.
Abstract:
Disclosed is a fire-protection and safety glazing laminate having a haze value less than 4 percent comprising (A) a plurality of high modulus layers laminated with (B) at least one fluoropolymer resin layer wherein (B) resides between (A). The high modulus layers comprise glass, polycarbonate or polyurethane. The fluoropolymer resin layer has a matte finish surface, an embossed finish surface or a combination thereof and is exposed to a corona treatment in an organic gas atmosphere. The high modulus layers are adhered to the fluoropolymer resin layer through a pressure and heat lamination.