Abstract:
A method for triggering an occupant protection device in a vehicle including the steps: detecting a first measured variable and simultaneously generating a corresponding first signal for indicating a necessity for triggering at least one occupant protection device; detecting an acceleration value in the z direction and simultaneously generating a corresponding second signal; calculating a trigger signal for triggering at least one occupant protection device as a function of the first and second signals, and triggering the at least one occupant protection device as a function of the calculated trigger signal. An appropriate device is also described.
Abstract:
An attitude angle estimator and method of estimating attitude angle of a vehicle. According to one embodiment, an angular attitude rate sensor senses angular attitude rate of a vehicle, and an accelerometer detects lateral or longitudinal acceleration. An attitude angle estimate is produced and is updated as a function of the sensed angular attitude rate. An acceleration-based attitude angle is determined as a function of the sensed acceleration, and a blending coefficient is provided. A *current vehicle attitude angle estimate is generated as a function of the updated attitude angle estimate, the acceleration-based attitude angle, and the blending coefficient. According to a second embodiment, both a roll angle estimate and a pitch angle estimate are determined.
Abstract:
Embodiments of the invention include a vehicle telematics system including a telematics device and a remote server system, wherein the telematics device obtains sensor data from at least one sensor installed in a vehicle, calculates peak resultant data based on the sensor data, generates crash score data based on the peak resultant data and a set of crash curve data for the vehicle, and provides the obtained sensor data when the crash score data exceeds a crash threshold to the remote server system and the remote server system obtains vehicle sensor data and vehicle identification data from the vehicle telematics device, calculates resultant change data and absolute speed change data based on the obtained sensor data and/or the vehicle identification data, and generates crash occurred data when the resultant change data exceeds a first threshold value and when the absolute speed change data is below a second threshold value.
Abstract:
A vehicle turn-over determination apparatus includes a turn-over sensor, a memory, a determination processor, and a road-surface detector. The turn-over sensor detects a value of a turn-over angle or a turn-over velocity of a vehicle. The determination processor performs the determination of the turn-over of the vehicle on the basis of the value detected by the turn-over sensor and the determination-threshold information held in the memory. The road-surface detector detects a road surface that is present in a traveling direction of the vehicle. The determination processor varies the determination-threshold information acquired from the memory in accordance with an inclination of the road surface detected by the road-surface detector, and thereby generates adjusted-threshold information adjusted in accordance with the inclination of the road surface. The determination processor compares the adjusted-threshold information and the detected value with each other, and thereby perform the determination of the turn-over of the vehicle.
Abstract:
A rollover detection system is provided that comprises a device, a sensor and/or a group of sensors and a warning system for use in a vehicle to reduce or prevent the likelihood of a rollover during operation of the vehicle. The rollover detection system can provide a driver of a vehicle, information that informs the driver of the risk and imminence of a rollover and allows the driver to take corrective action to reduce the risk or imminence of a rollover. The rollover detection system can also allow for the review of information collected by a device by a driver or other individual during and after a risk of a rollover is detected.
Abstract:
A method and system for controlling rollover calibration settings of a vehicle is disclosed. The vehicle has a roll axis extending from a front end of the vehicle to a back end of the vehicle. The method comprises monitoring an off-road signal indicating whether the vehicle is operating in an off-road mode or a default mode, monitoring a speed signal indicative of the speed of the vehicle, and selecting the rollover calibration settings of the vehicle based on the off-road signal and the speed signal.
Abstract:
In a triggering method for activating a lateral velocity estimating system for occupant protection devices, one or more vehicle-dynamics variables are sensed and evaluated. Based on the sensed vehicle-dynamics variables an oversteer and understeer detection procedure and a road condition detection procedure are performed, which are evaluated for activation of the lateral velocity estimating system.
Abstract:
A passive safety system has a passive safety device mounted on a vehicle, and a passive safety control means having an acceleration sensor detecting acceleration caused by an impact at the time of collision. The passive safety control means receives input an impact acceleration detection signal from the acceleration sensor and operates controllably the passive safety device. Further, the passive safety control means computes a physical quantity based on the impact acceleration detection signal inputted from the acceleration sensor, sets maximum and minimum reference values of the physical quantity in normal driving, performs a computation with respect to addition of a present acceleration inputted from the acceleration sensor to an integrated acceleration value at this point in time when the physical quantity crosses a range defined between the maximum and minimum reference values, and performs a computation with respect to a reset process of the integrated acceleration value when the physical quantity remains within the range defined between the maximum and minimum reference values.
Abstract:
An attitude angle estimator and method of estimating attitude angle of a vehicle having an angular attitude rate sensor sensing angular attitude rate of a vehicle, a vertical accelerometer sensing vertical acceleration, and a lateral accelerometer sensing lateral acceleration. An attitude angle estimate is produced and is updated as a function of the sensed angular attitude rate. An acceleration-based attitude angle is determined as a function of the sensed accelerations, and a blending coefficient is provided. A current vehicle attitude angle estimate is generated as a function of the updated attitude angle estimate, the acceleration-based attitude angle, and the blending coefficient.
Abstract:
A supplemental inflatable restraint system has a deployment algorithm which is enabled when a threshold acceleration is reached and then, based on subsequent measured acceleration data, determines whether and when to deploy an air bag. Rough road conditions produce accelerations which can enable the algorithm and then produce a reset event to terminate the algorithm. Reset events are each stored for a short time and the number of unexpired reset events is a measure of the rough road condition. The deployment calculation is adjusted to delay deployment for a time proportional to the number of reset events to allow gathering of additional acceleration data for the deployment decision.