Abstract:
An atmosphere sampling system includes: an unmanned rotary-wing aircraft platform including: an airframe capable of lifting a selected payload mass; at least one motorized rotor; and, a flight control system including an on-board controller; an atmosphere sampling unit having a total mass no greater than the selected payload mass, and including: a blower preferably having backward-facing blades, an inlet structure to draw in air to be sampled, and an outlet to discharge air after sampling; a plurality of sample containers; and, an indexing mechanism to move selected sample containers, one at a time, into contact with the inlet structure so that samples may be collected; and, a power supply with sufficient capacity to operate the motorized rotor(s), the onboard portion of the flight controller, the blower, and the indexing system.
Abstract:
An unmanned aerial vehicle includes an atmospheric sensor configured to measure an atmospheric condition. The unmanned aerial vehicle includes a rotor motor configured to drive rotation of a propeller of the unmanned aerial vehicle. The unmanned aerial vehicle includes a hybrid energy generation system including a rechargeable battery configured to provide electrical energy to the rotor motor; an engine configured to generate mechanical energy; and a generator coupled to the engine and configured to generate electrical energy from the mechanical energy generated by the engine, the electrical energy generated by the generator being provided to at least one of the rechargeable battery and the rotor motor.
Abstract:
An unmanned aerial vehicle includes at least one rotor motor configured to drive at least one propeller to rotate. The unmanned aerial vehicle includes a data center including a processor; a data storage component; and a wireless communications component. The unmanned aerial vehicle includes a hybrid generator system configured to provide power to the at least one rotor motor and to the data center, the hybrid generator system including a rechargeable battery configured to provide power to the at least one rotor motor; an engine configured to generate mechanical power; and a generator motor coupled to the engine and configured to generate electrical power from the mechanical power generated by the engine. The data center may include an intelligent data management module configured to control power distribution and execution of mission tasks in response to available power generation and mission task priorities.
Abstract:
A test flight system includes a test aircraft, and an atmospheric conditions-detecting vehicle that is separate and distinct from the test aircraft. The atmospheric conditions-detecting vehicle is configured to be deployed during a test flight of the test aircraft to detect atmospheric conditions of an environment in which the test aircraft operates during the test flight.
Abstract:
A weather modification system that includes both systems and vehicles capable of modifying the weather. The systems may include devices capable of utilizing compositions to create dispersants that can modify weather. The system is capable of autonomous weather modification where the vehicles may operate for long periods of time in the air and may be directed by a control station. The vehicles may include an airplane, a UAV, a balloon, a satellite, an airship, such as a lenticular airship, a helicopter or a lighter than air vehicle. The vehicles are capable of multiple functions including weather modification, weather monitoring, and coordination between different vehicles.
Abstract:
In one example, an unmanned aerial vehicle includes a fuselage and a lift assembly. The lift assembly is selected from a plurality of lift assemblies, each of the plurality of lift assemblies having a different flight modality. The fuselage includes a mounting portion configured to mount with any of the plurality of lift assemblies.
Abstract:
The disclosed embodiments include a trailer for an autonomous vehicle controlled by a command and control interface. The trailer includes a trailer body configured to retain the autonomous vehicle in an undeployed configuration. The trailer also anchors the autonomous vehicle in a deployed configuration. A tether is provided having a first end coupled to the trailer body and a second end that is configured to couple to the autonomous vehicle. A winch is utilized to adjust a length of the tether to move the autonomous vehicle between the undeployed configuration and deployed configuration. Further, a communication system communicates with the command and control interface and the autonomous vehicle to control movement of the autonomous vehicle between the undeployed configuration and deployed configuration.
Abstract:
Methods and apparatus to provide an aerial vehicle having an eyewall sensor to enable the aerial vehicle to stay within the eye of a hurricane and transmit weather information to a remote location. In one embodiment, the aerial vehicle is an unmanned aerial vehicle (UAV) launched into the eye of the hurricane.
Abstract:
An apparatus for removing harmful gas components out of the earth's atmosphere is a free-flying autonomous lightweight aircraft with an onboard gas processing system including gas separation or extraction devices, and inlets and outlets connected to the devices. Solar cells and/or thermoelectric generators provided on the craft produce electrical energy to operate the individual devices. The system may include a cryogenic closed-loop circulation system that participates in liquefying the extracted gas components. The apparatus is preferably a lighter-than-air craft like a dirigible. A method of extracting harmful gas components from the atmosphere involves flying the apparatus at a prescribed altitude level and operating the gas processing system to remove the harmful gas component from the atmosphere, then returning the apparatus to earth to offload the liquefied stored harmful gas component.
Abstract:
Methods and apparatus are disclosed for vehicle navigation with water depth detection. An example disclosed method includes determining a current and a projected water depth for road segments of and around a current route to a destination. Additionally, the example method includes, in response to the current or the projected water depth of the road segments of the current route exceeding a first threshold, determining an alternate route to the destination.