Abstract:
A continuous pore elastomer featured by being made of a polyurethane, having a three dimensional network pore structure of which skeletons have an average thickness of 20 μm or less and 80% or more of the skeletons have a thickness within the range of 2 to 20 μm, having an apparent density of 0.2 to 0.4 g/cm3, containing a surfactant with a HLB value of 8 or more, and being capable of absorbing water instantly;a process for producing the continuous pore elastomer, comprising a step of extracting out the pore generation agent from the molding with water; anda water-absorbing roller and a swab obtained by using the continuous pore elastomer.
Abstract translation:由具有三维网状孔结构的聚氨酯制成的连续孔弹性体,其骨架的平均厚度为20μm以下,骨架的80%以上的厚度为2〜20μm的范围 ,表观密度为0.2〜0.4g / cm 3,含有HLB值为8以上的表面活性剂,能够瞬间吸收水分; 一种连续孔弹性体的制造方法,其特征在于,包括用水从成型体中提取孔产生剂的工序; 以及通过使用连续孔弹性体获得的吸水辊和棉签。
Abstract:
A porous polyimide membrane is provided. The volume of pores with a diameter of between about 50 and about 300 nm is more than about 40%, preferably more than 75% of the total pore volume in the membrane. A method for preparing a porous polyimide membrane comprises: preparing a porous polyamide acid membrane; stretching the porous polyamide acid membrane to form a stretched membrane; and imidizing the stretched membrane to form a porous polyimide membrane. The volume of the pores with a diameter of about 50-300 nm is more than about 40%, preferably more than 75% of the total pore volume in the porous polyimide membrane.
Abstract:
The invention relates to expandable polyolefin beads which comprise blowing agent and have been coated with from 0.01 to 3% by weight of a salt and/or ester of a long-chain fatty acid, preferably with calcium stearate, to prevent caking during foaming.
Abstract:
Biodegradable and biocompatible porous scaffolds characterized by a substantially continuous polymer phase, having a highly interconnected bimodal distribution of open pore sizes with rounded large pores of about 50 to about 500 microns in diameter and rounded small pores less than 20 microns in diameter, wherein the small pores are aligned in an orderly linear fashion within the walls of the large pores. Methods of preparing polymeric tissue scaffolds are also disclosed.
Abstract:
A method for forming an open cell texturized surface in a silicone elastomer layer of a breast implant, or other medical implant, is created by forming a layer of uncured silicone elastomer, applying a coating of particles to the surface thereof, and curing the layer by heating it at an elevated temperature which also volatilizes the particles such that their constituent gases boil through the surface of the layer and create the texturing.
Abstract:
An object is to provide a porous film which has excellent removal performance of viruses and the like and a long lifetime, a virus removal method which uses the porous film as a filter, a method for producing a virus-free product which uses the porous film as a filter and a device which includes the porous film as a filter. In a porous film including a structure of spherical pores communicating with each other, an interconnected pore is an opening of the spherical pores communicating with each other, and the pore diameter of the interconnected pore is set to 10 nm or more and 35 nm or less, and the number of spherical pores which are present between one surface of the porous film and the other surface thereof and are 50 nm or more and 200 nm or less is set to 200 or more and 1000 or less.
Abstract:
A rigid flow control device includes a porous rigid body having an outer surface and an inner surface. The body defines a flow path and is formed from a material operatively arranged with a surface energy less than that of the fluid for passively impeding an undesirable component of the fluid more than a desirable component of the fluid.
Abstract:
A polyimide film suitable for use in the fabrication of a graphite layer includes a polyimide derived from reaction of diamine monomers with dianhydride monomers, and a foaming agent incorporated in the polyimide. Moreover, a process of fabricating a graphite film includes providing a polyamic acid solution formed by reaction of diamine monomers with dianhydride monomers, incorporating a foaming agent into the polyamic acid solution, forming a polyimide film from the polyamic acid solution, applying a first thermal treatment so that the polyimide film is carbonized to form a carbon film, and applying a second thermal treatment so that the carbon film is converted to a graphite film.
Abstract:
A porous polyimide resin film having a high aperture ratio, and a method for producing a porous polyimide film. The method includes removing fine particles from a polyimide resin-fine particle composite film to obtain a porous polyimide resin film by either removing at least a part of a polyimide resin portion of the polyimide resin-fine particle composite film prior to removing the fine particles, or by removing at least a part of the porous polyimide resin film subsequent to removing the fine particles.
Abstract:
A method for preparing a porous fluoropolymer precursor includes combining a fluoropolymer and a removable additive to form a composition, the removable additive having a thermal decomposition temperature greater than a sintering temperature of the fluoropolymer, compressing the composition to form a preform, and sintering the preform to form the porous fluoropolymer precursor. A method for preparing a porous fluoropolymer includes disposing the porous fluoropolymer precursor in a removing agent, contacting the removable additive with the removing agent, and removing, by the removing agent, the removable additive from the porous fluoropolymer precursor to form the porous fluoropolymer, wherein the porous fluoropolymer comprises a plurality of pores formed by removing the removable additive.