Abstract:
A valve apparatus for controlling the flow of two sources of a first fluid while preventing mixing of the two fluid sources is disclosed along with a system incorporating the same. The valve apparatus has a first valve chamber with a first valve mechanism for controlling the flow of a first fluid, such as a heated coolant, from a first source. A second valve chamber with a second valve mechanism controls the flow of a first fluid, such as a cooled coolant, from a second source, the first and second valve chambers being fluidly isolated from each other. At least one thermal actuator arranged within a control chamber or control manifold controls operation of the first and second valve mechanisms, the thermal actuator having a first activation temperature for controlling the first valve mechanism and a second activation temperature for controlling the second valve mechanism. A control fluid passing through the control chamber, or control manifold, dictates the operational settings of the first and second valve mechanisms, respectively. The control fluid may comprise a fluid to be heated and/or cooled, such as a transmission fluid.
Abstract:
Bypass valve for a lubrication circuit of an internal combustion engine equipped with a cooler of a respective lubricating fluid, the valve comprising a tubular body, a first outlet opening, a second outlet opening and a movable shutter slidingly associated to the tubular body so as to define a slide valve, wherein the valve comprises a bypass duct having development parallel to said development axis and partially penetrating in the tubular body to bypass said shutter.
Abstract:
A turbocharger for an internal combustion engine comprising a housing wherein the housing comprises one or more coolant passages for receiving a coolant to cool the turbocharger and one or more lubricant passages for receiving a lubricant to lubricate the bearings. The lubricant may be the lubricant for both the turbocharger bearings and the internal combustion engine. The coolant passages and lubricant passages in the turbocharger may be arranged in the housing to transfer heat from the lubricant to the coolant such that the transfer of heat between the coolant passages and lubricant passages is sufficient to cool the lubricant to a temperature that is suitable for subsequent use in the internal combustion engine.
Abstract:
An engine system with a coolant control valve includes: a valve housing having a first valve space and a second valve space formed at both sides by a partition and including a connection passage formed in the partition; a first rotary valve disposed in the first valve space and having first coolant passages; a second rotary valve disposed in the second valve space and having second coolant passages; distribution lines respectively connected to positions corresponding to the first coolant passages and the second coolant passages and distributing the coolant coming through the first rotary valve and the second rotary valve; and a driver to rotate the first rotary valve and the second rotary valve. In particular, the first and second coolant passages are connected to the connection passage depending on the rotation positions of the first rotary valve and the second rotary valve.
Abstract:
A method for operating an oil circuit for a vehicle, the oil circuit being configured to supply oil to an internal combustion engine, wherein the oil circuit includes an oil cooler, and wherein at least one temperature sensor measures the temperature of the oil flowing through the oil circuit, downstream of the oil cooler and upstream of the internal combustion engine, the temperature sensor being connected for signaling purposes to a regulating and/or control device, includes: controlling and/or regulating, by the regulating and/or control device, the temperature of the oil flowing through the oil circuit, such that the temperature measured by the temperature sensor has a defined target temperature value; and setting and/or adjusting, by the regulating and/or control device, as a function of a drive power of the internal combustion engine, the defined target temperature value so as to reduce fuel consumption of the internal combustion engine.
Abstract:
A method of modifying the oil cooling system of a diesel engine includes the steps of removing the original equipment liquid-to-liquid heat exchanger and installing a manifold having a configuration adapted to match the mounting configuration of the oil passages of the original equipment liquid-to-liquid heat exchanger. The manifold has an oil outlet port directed to a remotely mounted oil cooler. The manifold also has a water passage having a configuration that is adapted to match the mounting configuration of the water passages of the original equipment liquid-to-liquid heat exchanger. The water passage causes the entirety of the flow of water to be discharged back to the water cooling system of the engine where it is circulated by the water pump through the water cooling passages in the engine.
Abstract:
A work vehicle equipped with a main engine, a main engine gearbox and a main engine cooling circuit for circulating an engine coolant, the cooling circuit comprising at least one sub-portion comprising a radiator for heating the driver's cabin of the work vehicle. A heat exchanger is configured for heat exchange between said engine coolant and a lubricant flowing in a circuit into and out of a gearbox other than the engine gearbox. This latter gearbox can be the traction gearbox driven by a hydrostatic motor that is in turn powered by main-engine driven pump. The traction gearbox oil is then cooled by the engine coolant when the temperature difference between the engine coolant and the traction gearbox oil is higher than when the work vehicle is in active operation in the field.
Abstract:
An engine system having a coolant control valve may include a cylindrical valve having a pipe structure with one side opened and including coolant passages formed in preset positions from one inner circumferential surface to an outer circumferential surface of the cylindrical valve to allow a coolant to pass therethrough, a valve housing configured for the cylindrical valve to be rotatably disposed therein and having connection pipes connected thereto to correspond to the coolant passages, a valve driving device, a pump housing disposed in one end portion of the cylindrical valve to correspond to the opened side of the cylindrical valve, having a pump impeller disposed therein, and coupled to the valve housing, a pump driving device disposed to rotate the pump impeller, and a pump discharge line connected to the pump housing to transmit a coolant pumped by the pump impeller to a cylinder block.
Abstract:
A power system including an engine, a first heat transfer circuit, and a second heat transfer circuit. The first heat transfer circuit includes a first heat exchanger that cools a first circuit fluid. The first circuit fluid cools a block and a head of the engine. The second heat transfer circuit includes a second heat exchanger that cools a second circuit fluid. The second circuit fluid cools a lube oil cooler.
Abstract:
A vehicle cooling system includes an internal combustion engine, a transmission having a cooler, a coolant pump, a first coolant loop, a second coolant loop, and a flow regulator. The first coolant loop fluidly connects the coolant pump to the engine and returns to the coolant pump. The second coolant loop fluidly connects the coolant pump to the transmission cooler and returns to the coolant pump, bypassing the engine. The flow regulator is configured to selectively restrict coolant flow through the second coolant loop.