Abstract:
A method and apparatus for insulating the exhaust passage of an internal combustion engine is disclosed. A three-zone liner assembly is provided with an outer zone comprised of a room temperature vulcanizing silicone sleeve, an inner zone comprised of a stamped and seam welded high strength Al-Cr-steel alloy, and an intermediate zone consisting of a ceramic wool mat. The liner assembly is supported or enclosed within a mild carbon sheet metal sleeve which in turn may be bonded to the engine passage wall by use of a room-temperature-vulcanized silicone if of the insert type, or by fusion bonding during casting if of the cast-in-place type.
Abstract:
A heat resistant member includes a metal or ceramic substrate and a thermal-barrier coating layer disposed on the substrate. The thermal-barrier coating layer includes a metal layer functioning as a bonding layer and one or more ceramic layers disposed on the metal layer. At least one of the ceramic layers is mainly composed of a hafnium oxide-based ceramic layer containing 85% or more of hafnium oxide. Due to the above structure, there can be provided a heat resistant member with high heat resistance and durability which has a thermal-barrier coating layer with stable thermal conductivity at elevated temperatures, namely, not less than 1,200° C., and resistance to cracking and delamination due to sintering.
Abstract:
Articles for use in a high temperature environment, and methods for protecting articles in such environments, are provided. The article comprises a substrate comprising silicon; a bondcoat comprising silicon, disposed over the substrate; an intermediate barrier disposed over the bondcoat, the barrier comprising at least one layer, wherein the at least one layer comprises a rare-earth silicate and is substantially free of mullite; and a topcoat disposed over the intermediate barrier, the topcoat comprising a rare-earth monosilicate. The method comprises providing a substrate, the substrate comprising silicon; disposing a bondcoat comprising silicon over the substrate; disposing an intermediate barrier over the bondcoat, the barrier comprising at least one layer, wherein the at least one layer comprises a rare-earth silicate and is substantially free of mullite; and disposing a topcoat over the intermediate barrier, the topcoat comprising a rare-earth monosilicate.
Abstract:
A thermal barrier and wear coating having high strength, low conductivity, a low thermal expansion coefficient and good adhesion qualities, where the wear coating is self-lubricating and has high temperature resistance, a hard wear resistant matrix, a low coefficient of friction and is easy to machine to a smooth surface. The thermal barrier is applied to the internal engine cylinder surface to reduce the heat rejection and thus reduce the need for air or liquid cooling. The self-lubricating wear coating is applied over the thermal barrier to prevent contact between the moving engine parts and the thermal barrier. The wear coating has a low friction coefficient so that it does not generate substantial additional heat and is self-lubricating to withstand temperatures up to 900.degree. C.
Abstract:
Operation of in-cylinder fuel injected internal combustion engines is improved by use of exhaust valves having an effective ignition catalyt on the valve face. In operation of the engine, fuel is injected into air and ignited by contact with the valve face prior to top dead center.
Abstract:
An object of this invention is to provide a surface protective film which is capable of suppressing the entry of a corrosive gas as compared with conventional surface protective films. A surface protective film according to this invention is a film which contains yttria (Y2O3) as a main component and also contains cerium. Since the surface protective film contains cerium, defects such as micropores in the film are reduced, thereby enabling suppression of the entry of a corrosive gas.
Abstract:
A multiphase, high-temperature material contains an intermetallic base alloy of the Ti.sub.3 Al type, which is intended especially for use in heat engines such as internal combustion engines, gas turbines and aircraft engines. The material contains from 44 to 73 atom % titanium, from 19 to 35 atom % aluminum, from 2 to 6 atom % silicon, and from 5 to 15 atom % niobium. The desired microstructure is attained by heat treating the alloy at between 800.degree. and 1100.degree. C.
Abstract:
A method for producing a metallic component provided with a ceramic lining in a mold includes applying a first ceramic layer to a mold. A sliding layer is applied to the first ceramic layer. A second ceramic layer divided by joints into individual zones is applied to the sliding layer. The second ceramic layer is coated with a metal forming a finished component.
Abstract:
Disclosed is a method of operating a catalytic ignition internal combustion engine wherein the fuel is injected into a combustion chamber at a time near maximum compression such that at least part of the fuel impinges upon an oxidation catalyst surface comprising a portion of the wall of said combustion chamber, said catalytic surface being insulated from the surroundings external to the combustion chamber by a low thermal conductivity material, said catalytic surface preferably comprising platinum. Also disclosed are combustion chambers constructed specially for the use of this method and the methods of constructing them.
Abstract:
Disclosed is a method of operating a catalytic ignition internal combustion engine wherein the fuel is injected into a combustion chamber at a time near maximum compression such that at least a part of the fuel impinges upon an oxidation catalyst surface comprising a portion of the wall of said combustion chamber, said catalytic surface being insulated from the surroundings external to the combustion chamber by a low thermal conductivity material, said catalytic surface preferably comprising platinum. Also disclosed are combustion chambers constructed specially for the use of this method and the methods of constructing them.