Abstract:
A method of transporting natural gas by liquefaction of natural gas at ambient temperature, achieved by mixing the natural gas at high pressure with a hydrocarbon that is a stable liquid at ambient temperature and ambient pressure. The hydrocarbon liquid may be crude oil or a distillate of crude oil. The method includes: liquefaction: mixing the natural gas with the hydrocarbon liquid at an ambient temperature and a high pressure to generate a liquid mixture, which contains the natural gas dissolved in the hydrocarbon liquid; shipping: transporting the liquid mixture using a marine tanker, during which the liquid mixture is maintained at ambient temperature and the high pressure; and regasification: at the destination, releasing a gas from the liquid mixture by lowering the pressure of the liquid mixture. The hydrocarbon liquid may be used multiple times.
Abstract:
Unconstrained rotational movement of an inner vessel with respect to an outer vessel at one end of a cryogenic storage vessel increases stress in supports at an opposite end. A storage vessel for holding a cryogenic fluid comprises an inner vessel defining a cryogen space and having a longitudinal axis, and an outer vessel spaced apart from and surrounding the inner vessel, defining a thermally insulating space between the inner and outer vessels. A structure for supporting the inner vessel within the outer vessel at one end comprises an inner vessel support bracket connected with the inner vessel, an outer vessel support bracket connected with the outer vessel, and an elongated support extending between and mutually engaging the inner and outer support brackets to constrain radial and rotational movement of the inner vessel with respect to the outer vessel and to allow axial movement of the inner vessel with respect to the outer vessel along the longitudinal axis.
Abstract:
The present invention includes: an independent tank constituting an inner tank to store a storage material therein; at least one sandwich plate modularized and manufactured include a metal plate provided in a pair opposite to each other, the metal plates having a reinforcing material formed therebetween, and a filler filled between the metal plates, the at least one sandwich plate surrounding the outer surface of the independent tank to constitute an outer tank; and an external reinforcing member formed on the outer surface of the sandwich plate.
Abstract:
A fuel gas storage tank is disclosed that can store fuel gas, such as natural gas or hydrogen, in a solid state. The fuel gas storage tank includes a shell having a tank interior, a fuel gas storage material housed within the tank interior, one or more fuel gas injecting tubes, and one or more fuel gas collecting tubes. Each of the fuel gas injecting tube(s) and the fuel gas collecting tube(s) is permeable to fuel gas and is disposed in the tank interior and surrounded by the fuel gas storage material. And, within the tank interior, the one or more fuel gas injecting tubes and the one or more fuel gas collecting tubes are not directly connected to one another.
Abstract:
A frangible closure coupling is used with or on pipe of a tank that contains a potentially dangerous fluid, such as liquid natural gas. The closure coupling mitigates the uncontrolled release of fluid from the tank in the event of a rupture of a pipe attached to the tank.
Abstract:
A liquefied gas storage tank includes: an inner shell storing a liquefied gas; an outer shell forming a vacuum space between the inner shell and the outer shell; and a fail-safe thermal insulating layer covering an outer side surface of the outer shell. According to this configuration, the fail-safe thermal insulating layer is not disposed in the vacuum space. This makes it possible to suppress the degradation over time of the degree of vacuum in the vacuum space.
Abstract:
Vehicles, systems, and methods for delivering natural gas and providing mobile fueling services are disclosed. A method of delivering natural gas includes: delivering a source vehicle to a receiving tank for receiving natural gas at a remote refueling location, the source vehicle having a natural gas engine for driving the vehicle and a source tank disposed onboard the source vehicle for storing the natural gas; and transferring natural gas from the source vehicle to the receiving tank using pressure equalization between the source tank and the receiving tank and using a compressor disposed onboard the source vehicle. The onboard compressor is operatively connected to and powered by the source vehicle engine. The source tank is adapted to store a volume greater than or equal to about 200 DGE of natural gas and supplies natural gas to power the source vehicle engine.
Abstract:
This invention concerns a system and equipment for supplying high pressure gas using special hydraulic oil which comprises a mobile hydraulic pressurization unit also known as an “HPU”, mounted on a truck which is connected to a semi-trailer comprising pressurized gas cylinders, where a pump, which activates a mobile hydraulic pressurization unit is coupled by a coupling device to the engine of the truck itself, and with pressurized gas cylinders with open upper and lower ends, comprising a single valve positioned at the upper end of the cylinders, which send the pressurized gas to a client, a single valve positioned at the lower end of the cylinders which both send hydraulic oil to the cylinders from an oil reservoir, and return the hydraulic oil to a hydraulic oil reservoir from the cylinders.
Abstract:
Methods and systems for modular fuel storage and transportation are provided. In an embodiment, a fuel storage system includes one or more fuel containers each supported by a fuel container support assembly. The fuel storage system may be mounted to a transportation device such as a vehicle or used in a stand-alone fashion. Each support assembly may include a plurality of detachable end support members such as end support members configured to support the end portions of the fuel container and side support members configured to support the body portion of the fuel container. Some of the end support members may include neck grooves such that when the end support members are coupled, the neck grooves form an enclosure around the neck portion of the fuel container. In an embodiment, the support assembly is configured to facilitate release of excess pressure in the fuel container.
Abstract:
A structure of a horizontal type cylindrical double-shell tank mounted on a ship includes: an inner shell storing liquefied gas; and an outer shell forming a vacuum space between the inner shell and the outer shell. A pair of support units supporting the inner shell is disposed between the inner shell and the outer shell. Each support unit includes: a plurality of cylindrical elements arranged in a circumferential direction of the tank such that an axial direction of each of the cylindrical elements coincides with a radial direction of the tank; a plurality of inner members each holding an end portion of a corresponding one of the cylindrical elements at the inner shell side; and a plurality of outer members each holding an end portion of a corresponding one of the cylindrical elements at the outer shell side. Each of the cylindrical elements is made of glass fiber reinforced plastic.