Abstract:
A method for performing tasks on items located in a space using a robot, the items being located proximate fiducial markers, each fiducial marker having a fiducial identification. The method includes receiving an order to perform a task on at least one item and determining the fiducial identification associated with the at least one item. The method also includes obtaining, using the fiducial identification of the at least one item, a set of coordinates representing a position of the fiducial marker with the determined fiducial identification, in a coordinate system defined by the space. The method further includes navigating the robot to the coordinates of the fiducial marker associated with said determined fiducial identification.
Abstract:
Methods, apparatus, systems, and computer-readable media are provided for determining and assigning intermediate handoff checkpoints for low-resolution robot planning. In various implementations, a global path planner may identify a task to be performed by a robot in an environment. In various implementations, the global path planner may determine, based at least in part on one or more attributes of the environment or the task, an intermediate handoff checkpoint for the robot to reach by a scheduled time while the robot performs the task. In various implementations, the global path planner may determine that a measure of reactivity that would be attributable to the robot upon the robot being assigned the intermediate handoff checkpoint satisfies a reactivity threshold. In various implementations, the global path planner may provide, to a local path planner associated with the robot, data indicative of the intermediate handoff checkpoint.
Abstract:
Example implementations include a system and method for remotely controlling the motion of a robot. In example implementations, the user is presented with a display having video from a camera on the robot augmented with abstract sensor data, and facilitates the user to draw motion path commands directly on the camera view. Analysis of the scene for obstacles is performed, so that the drawing of commands is interactive, preventing the user from drawing impossible paths. The path sketch is then transformed into the coordinate system of the robot and used to generate commands that will move the robot to the desired location. Sensor data is also used to augment the camera view, in particular for highlighting dangers and obstacles.
Abstract:
The disclosure includes a system and method for using a robot to simulate user motions by detecting a user, estimating a first position and orientation of the user, determining a current position of the robot, generating an initial path from the current position of the robot to a goal position based on whether the robot affects the user while travelling on the initial path, determining whether the user will traverse in response to the robot when the robot travels on the initial path, responsive to the user traversing in response to the robot, estimating a second position where the user will move when the robot is near, and generating a new path from the current position of the robot to the goal position.
Abstract:
A robot arrangement has a movable, programmable robot (2), which has a plurality of links (4, 5, 6, 7) and axes of motion (I-VII) and is arranged on a movable, drivable carrying device (15). The robot arrangement (1) has a robot arrangement drive (16), which can be actuated by the robot (2), for the carrying means (15).
Abstract:
A robot system includes a mobile robot having a controller executing a control system for controlling operation of the robot, a cloud computing service in communication with the controller of the robot, and a remote computing device in communication with the cloud computing service. The remote computing device communicates with the robot through the cloud computing service.
Abstract:
A mobile robot including a robot body, a drive system supporting the robot body, and a controller in communication with the drive system. The robot also includes an actuator moving a portion of the robot body through a volume of space adjacent the mobile robot and a sensor pod in communication with the controller. The sensor pod includes a collar rotatably supported and having a curved wall formed at least partially as a surface of revolution about a vertical axis. The sensor pod also includes a volumetric point cloud sensor housed by the collar and observing the volume of space adjacent the robot from within the collar along an observation axis extending through the curved wall. A collar actuator rotates the collar and the volumetric point cloud sensor together about the collar axis.
Abstract:
A path finding device includes a search unit, a calculation unit, and a selection unit. The search unit finds paths to reach a goal point from a start point while detouring around a stationary obstacle. The calculation unit calculates, for each of the found paths, an encounter probability that is a probability of encountering a non-stationary obstacle using previously accumulated non-stationary obstacle information. The selection unit selects a path with a lowest encounter probability among the found paths.
Abstract:
A remote control unit configured to wirelessly control a mobile robot moving through an environment and having a robot camera. The remote control unit comprises a privacy button operable by a local user and configured to engage a privacy mode of the mobile robot, and a wireless transmitter configured to emit a wireless control signal to the mobile robot based on input from a keypad of the RC unit. The wireless control signal is configured to cause the robot camera to block the field of view of the robot camera such that the environment of the mobile robot is obscured when the privacy mode of the mobile robot is engaged.
Abstract:
A mobile object apparatus is provided. The mobile object apparatus includes an object having a first function; a moving unit that is capable of moving so as to move the object; a driving unit configured to drive the moving unit; and a receiver configured to receive a command from outside. The driving unit controls the moving unit according to the command received so that a second function is achieved.