Abstract:
Disclosed are fibers comprising identification fibers which can be used for tracking and tracing fibers, yarns, fiber bands, and/or articles comprising the fibers through at least part of the supply chain. Each identification fiber exhibits at least one distinct feature. Each group of distinguishable identification fibers can exhibit a taggant cross-section shape, a taggant cross-section size, or combination of the same taggant cross-section shape and same taggant cross-section size. The distinct features and the number of fibers in each group of distinguishable identification fibers can represent at least one supply chain component of the fibers. The distinct features can be detectable in an article comprising the fibers.
Abstract:
A self-authenticating intelligent document in sheet medium form has an information storage and transfer means incorporated thereinto for storing the original text portion of document information formed on the surface of the sheet medium and for storing an image of the completed document after supplemental information has been added to the original text portion on the surface of the sheet medium. The information storage and transfer means is either a single RFID tag having a first memory portion for storing the text portion and a second memory portion for storing the image of the completed document; or a first RFID tag having a memory portion for storing the text portion and a second RFID tag for storing the image of the completed document. To verify the authenticity of the document, the image stored in the information storage and transfer means is read out and compared with the visible version. When the two are identical, the document is authentic.
Abstract:
Directional albedo of a particular article, such as an identity card, is measured and stored. When the article is later presented, it can be confirmed to be the same particular article by re-measuring the albedo function, and checking for correspondence against the earlier-stored data. The re-measuring can be performed through us of a handheld optical device, such as a camera-equipped cell phone. The albedo function can serve as random key data in a variety of cryptographic applications. The function can be changed during the life of the article. A variety of other features are also detailed.
Abstract:
First and second patterns are formed on a substrate. A spatial offset between the patterns is determined, and stored for later use in authenticating the substrate. (One or both of the patterns may convey steganographic information. One pattern may be printed, while the other may be embossed.) A smartphone can sense these patterns, determine the spatial offset, and check whether the determined offset matches the earlier-stored offset, to judge whether the substrate is authentic. Another arrangement effects serialization of product packaging by use of paired patterns (at least one of which is typically a watermark pattern) applied in a manner causing a spatial offset between the patterns to progressively vary along a length of a printed web. Still other arrangements involve substrates conveying patterns that degrade over time, e.g., indicating freshness or pressurization condition. A great variety of other features and arrangements are also detailed.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a plurality of pixels. At least two of the pixels are configured such that a value, into which a permutation or combination of luminance values of light emitted respectively from the at least two or more pixels is converted based on data of an original image displayed on the display, is used as identification information for identifying the display.
Abstract:
The present invention is a method and apparatus for protection of various items against counterfeiting using physical unclonable features of item microstructure images. The protection is based on the proposed identification and authentication protocols coupled with portable devices. In both cases a special transform is applied to data that provides a unique representation in the secure key-dependent domain of reduced dimensionality that also simultaneously resolves performance-security-complexity and memory storage requirement trade-offs. The enrolled database needed for the identification can be stored in the public domain without any risk to be used by the counterfeiters. Additionally, it can be easily transportable to various portable devices due to its small size. Notably, the proposed transformations are chosen in such a way to guarantee the best possible performance in terms of identification accuracy with respect to the identification in the raw data domain. The authentication protocol is based on the proposed transform jointly with the distributed source coding. Finally, the extensions of the described techniques to the protection of artworks and secure key exchange and extraction are disclosed in the invention.
Abstract:
A portable token and systems and methods for identification and authentication of the same are disclosed. The portable token may be utilized for a variety of purposes and uses a thin section of rock as a unique identifying element, which is extremely resistant to forgery or duplication. Identification and authorization of tokens is achieved by a system that uses optical examination of the microstructure and the refractive properties of crystalline minerals within the identifying element, by transmitted polarized light techniques. Comparison between stored reference data and acquired examination data is the basis for verifying authenticity. The naturally-occurring three-dimensional orientations of the optical axes of mineral crystals contribute to the identification information by their effects.
Abstract:
A method for authenticating an object, comprising determining a physical dispersion pattern of a set of elements, determining a physical characteristic of the set of elements which is distinct from a physical characteristic producible by a transfer printing technology, determining a digital code associated with the object defining the physical dispersion pattern, and authenticating the object by verifying a correspondence of the digital code with the physical dispersion pattern, and verifying the physical characteristic.
Abstract:
Mitigation of processing artifacts caused by surfaces with high contrast printing or coloring transitions within a system to compare signatures derived from inherent physical surface properties of different articles to authenticate or validate articles and within a system to generate signatures from inherent physical surface properties of different articles.
Abstract:
Directional albedo of a particular article, such as an identity card, is measured and stored. When the article is later presented, it can be confirmed to be the same particular article by re-measuring the albedo function, and checking for correspondence against the earlier-stored data. The re-measuring can be performed through us of a handheld optical device, such as a camera-equipped cell phone. The albedo function can serve as random key data in a variety of cryptographic applications. The function can be changed during the life of the article. A variety of other features are also detailed.