Abstract:
A gas discharge lamp includes an arc envelope and a cooling device. Cooling passage is provided between the arc envelope and the cooling device. An airflow blocking structure is mounted rotatably to the arc envelope. The airflow blocking structure blocks airflow between the cooling device and the arc envelope except for a portion of the passage directed towards a top side of the arc envelope.
Abstract:
A target assembly for a projection cathode ray tube is provided wherein the target member is cooled by convective fluid heat transfer occurring within and around a partially hollow support shaft screw. The target member is a solid block of relatively high, thermally conductive material, such as aluminum, coated with an electron beam sensitive material. The shaft screw also comprises relatively high thermally conductive material, such as copper, and has an internal passage leading from a source of cooling fluid, such as dry air, to a annular array of ports located in a distal portion of the supporting shaft screw. The distal portion of the shaft screw has a flaring cross section for increased heat transfer. A bellows encloses the distal portion forming a passageway so as to cause the cooling fluid to also flow along the external surface of the shaft screw. This arrangement adds to the effective convective heat transfer from the shaft screw to the cooling fluid. A rubber boot surrounds the proximate end of the shaft screw including an adjustable mounting pad to form a portion of the passageway and isolate high voltage potentials. A temperature sensitive detecting element is attached to the target member to sense changes in the temperature during operation. A controller responds to the sensed changes in the temperature and changes the flow rate of the cooling fluid to maintain the temperature relatively constant.
Abstract:
An electron discharge tube evaporation cooling system in which part of a tube to be cooled is immersed in coolant in a boiler (15), the cooling system further comprising a condenser (18) for vapor generated in the boiler (15), and a coolant reservoir (11). The flow of vapor from the boiler (15) to the condenser (18) experiences resistance in the interconnecting pipe (17), producing in the boiler (15) a back pressure dependent on the dimensions of the pipe (17). In order that a desired level (40) of coolant in the boiler (15) can be obtained for a range of back pressures, the coolant is supplied to the boiler via an overflow system (16) having an adjustable overflow level. The overflow system (16) comprises a chamber (31) open to atmosphere at the top (34) and having at the bottom (33) an opening (36) through which an overflow tube (35) passes. The opening (36) is provided with a liquid-tight gland (37) comprising a compressible ring (42) and a pressure member (43) adjustable to allow the tube (35) to be slid through or to lock it in position.
Abstract:
According to various aspects, exemplary embodiments are disclosed of systems that may be used for cooling objects, such as X-ray tubes and detectors, etc. Also disclosed are exemplary embodiments of methods for cooling objects, such as X-ray tubes and detectors, etc. For example, an exemplary embodiment includes a system that can be used to cool an X-ray tube and detector with one chiller. As another example, an exemplary embodiment of a method includes using one chiller to cool an X-ray tube and detector.
Abstract:
Systems and methods for replacing coolant of an x-ray tube assembly having a closed cooling system include a service port that is operatively installed in the cooling system and a vacuum assisted service kit that is operatively coupled to the service port. Used coolant is drained from the x-ray tube assembly, and thereafter a vacuum is drawn on the x-ray tube assembly via the service kit. Replacement coolant within a vacuum tank of the service kit is degassed under a vacuum. The degassed replacement coolant is provided into the cooling system from the vacuum tank, preferably by pushing under pressure with an inert gas to prevent the introduction of any air into the replacement coolant. The replacement coolant may be pressurized in the cooling system with the inert gas. Thereafter, the service port is closed, and the service kit may be disconnected from the service port.
Abstract:
A liquid-cooled light emitting diode (LED) bulb which includes a base, a shell connected to the base forming an enclosed volume, and a plurality of LEDs attached to the base and disposed within the shell. The LED bulb also includes a volume of thermally-conductive liquid held within the enclosed volume. A scavenger element comprising a scavenger material is attached to the base and is exposed to the thermally-conductive liquid. The scavenger material is configured to capture contaminants in the thermally-conductive liquid.
Abstract:
A substrate treatment installation includes an installation chamber and a light source for the exposure of substrates to light. The light source is arranged in the interior of the substrate treatment installation and includes at least one discharge lamp arranged in a housing, which is permeable to light at least in sections and has a vacuum-tight cavity for accommodating the lamp, and also at least one reflector element arranged in spatial proximity to the at least one lamp and having an electrical connection.
Abstract:
A liquid-cooled light emitting diode (LED) bulb which includes a base, a shell connected to the base forming an enclosed volume, and a plurality of LEDs attached to the base and disposed within the shell. The LED bulb also includes a volume of thermally-conductive liquid held within the enclosed volume. A scavenger element comprising a scavenger material is attached to the base and is exposed to the thermally-conductive liquid. The scavenger material is configured to capture contaminants in the thermally-conductive liquid.
Abstract:
The invention is directed to an arrangement for the generation of short-wavelength radiation based on a hot plasma generated by gas discharge and to a method for the production of coolant-carrying electrode housings. It is the object of the invention to find a novel possibility for gas discharge based short-wavelength radiation sources with high average radiation output in quasi-continuous discharge operation by which efficient cooling principles can be implemented using inexpensive and simple means in order to prevent a temporary melting of the electrode surfaces and, therefore, to ensure a long lifetime of the electrodes. According to the invention, this object is met in that special cooling channels for circulating coolant are integrated in electrode collars of the electrode housings. The cooling channels are advanced radially up to within a few millimeters of the highly thermally stressed surface regions and are connected by necked-down channel portions which are arranged coaxial to the axis of symmetry and which are provided with channel structures for increasing the inner surface and for increasing the flow rate of the coolant.
Abstract:
A coolant system for a high power microwave excited plasma tube is described which comprises liquid dimethyl polysiloxane in a coolant system structure for flowing the liquid into contact with the plasma tube, the system structure comprising metallic or hard plastic materials.