Abstract:
A method for exchanging coolant in a cooling system, which cooling system comprises at least one pump, an inlet conduit, an outlet conduit. The inlet conduit is connected to at least one external coolant source. The method comprises controlling said at least one pump to flow coolant in the cooling system from the at least one coolant source via the inlet conduit, through the cooling system, to the outlet conduit until the coolant in the cooling system has been at least partly exchanged. The disclosure also relates to a control unit configured to control exchange of coolant according to the method, a cooling system comprising the control unit and a vehicle or vessel comprising the cooling system.
Abstract:
A conduit connector (1) having a housing (2), which has a first connection geometry (3) that can be connected to a fluid conduit, and a second connection geometry (4) that can be connected to a counter-element, wherein the first connection geometry and the second connection geometry are connected by a through channel (6) in the housing and the housing has an outlet opening (7) and a closing element (10) is provided, wherein the closing element can be fixed in a first position, in which a connection between the outlet opening and the through channel is blocked, and the closing element is displaceable into a second position, in which the outlet opening is connected to the through channel.
Abstract:
A dewatering device for an internal combustion engine having an engine body with a lower portion, an exterior wall, and a combustion chamber formed in the engine body, the dewatering device comprising a normally closed dewatering valve detachably secured to the exterior wall, a valve activating member, and a bracket for supporting the valve activating member on the lower portion of the engine body. The dewatering valve is spring loaded and moves between a normally closed position and an open position upon operation of the valve activating member, thereby allowing evacuation of water from the combustion chamber.
Abstract:
Systems and methods disclosed provide an automotive fluids management and maintenance system (AFMMS) that manages and maintains fluids within vehicles by accurately and in a controlled manner directing the propulsion of these fluids into vehicle's internal components and also accurately and in a controlled manner draining fluids out of vehicle's internal components. The systems and methods enable a technician to dispense any desired fluid and pump the same into a vehicle internal component with speed, efficiency, accuracy, and in a very clean and unwasteful manner. The AFMMS is powered by a standard shop air supply. Once charged with air pressure, the AFMMS becomes mobile and is without any attachments, e.g., to a wall air supply, thus making it safe and convenient to be used around any shop environment, as well as outside in parking lots.
Abstract:
An apparatus for replacing coolant includes a communication unit, a pressure gauge, a flexible tube, a conical plug, a valve and a vacuum producer. The communication unit includes a first port, a second port and a third port in communication with one another. The pressure gauge is connected to the third port. The flexible tube is connected to the first port. The conical plug includes a liquid channel extending throughout the conical plug. The liquid channel is connected to the flexible tube. The valve includes a switch and a pneumatic quick coupling device. The switch is connected to the second port to selectively allow or stop communication of the pneumatic quick coupling device with the second port. The vacuum producer includes a pump and a hollow insert extending from the pump. The hollow insert is adapted for connection to the pneumatic quick coupling device so that the pump is operable to produce vacuum in the valve.
Abstract:
The tank main body of a header tank of a condenser has slits formed in a circumferential wall thereof at positions between opposite end surfaces of the circumferential wall and heat exchange tubes at the opposite ends. Plate-shaped closure members are inserted into the slits from the outside of the tank main body and joined to the circumferential wall of the tank main body. Drain openings are formed in the circumferential wall of the tank main body at positions on the outer sides of the closure members as viewed in the longitudinal direction of the tank main body. A portion of a surface of each closure member which faces outward in the longitudinal direction of the tank main body forms a portion of a peripheral edge of the corresponding drain opening.
Abstract:
Systems and methods for replacing coolant of an x-ray tube assembly having a closed cooling system include a service port that is operatively connected to a portion of the x-ray tube assembly and a vacuum assisted service kit that is operatively coupled to the service port. Used coolant is drained from the x-ray tube assembly, and thereafter a vacuum is drawn on the x-ray tube assembly via the service kit. Replacement coolant within a vacuum tank of the service kit is degassed under a vacuum. The degassed replacement coolant is provided into the cooling system from the vacuum tank, preferably by pushing under pressure with an inert gas to prevent the introduction of any air into the replacement coolant. The replacement coolant may be pressurized in the cooling system with the inert gas. Thereafter, the service kit may be disconnected from the service port.
Abstract:
A cylinder block side drain is provided in a cylinder block and a crankcase side drain is provided in a crankcase. A jacket cover is provided in an water jacket of the cylinder block. The jacket cover is pressed against the wall of the water jacket on the crankcase side. When discharging the coolant, the water jacket is opened by pushing the jacket cover inward using a coupler and the coolant is discharged to the outer side of the crankcase via the coupler.
Abstract:
The tank main body of a header tank of a condenser has slits formed in a circumferential wall thereof at positions between opposite end surfaces of the circumferential wall and heat exchange tubes at the opposite ends. Plate-shaped closure members are inserted into the slits from the outside of the tank main body and joined to the circumferential wall of the tank main body. Drain openings are formed in the circumferential wall of the tank main body at positions on the outer sides of the closure members as viewed in the longitudinal direction of the tank main body. A portion of a surface of each closure member which faces outward in the longitudinal direction of the tank main body forms a portion of a peripheral edge of the corresponding drain opening.
Abstract:
The disclosure relates to a control valve for a medium circuit of an internal combustion engine, in particular to a thermostat of a coolant circuit of the internal combustion engine. The control valve includes a valve housing, an expansible material element arranged in a valve body, an energy accumulator having an abutment element, a valve seat, and at least one locking element arranged on the abutment element, each locking element having a counter-latching face. The control valve has a first position wherein the counter-latching face of each locking element is in a non-positive connection with a corresponding latching face of the valve housing in order to force the control valve into a mechanically blocked, forced-open position, the latching face being formed by means of an opening edge in the valve housing. This position may enable a quick and reliable initial filling or refilling of the coolant circuit.