Abstract:
A rail vehicle (1), a method of producing and method of driving the rail vehicle (1) which comprises at least one car body (2). The car body (2) comprises two car body ends (3, 4) the end region of which is supported on a respective wheel unit (5, 6). At least one wheel unit (5, 6) is designed to be driven. The rail vehicle comprises a drive arrangement comprising a transformer unit (7), a traction motor unit (9) and a power converter unit (8). The primary transformer unit (7) and primary power converter unit (8) are arranged adjacent the first wheel unit (5). The primary transformer unit (7) and the primary power converter unit (8) are connected to the second wheel unit (6) such that a traction motor unit (9), of the second wheel unit (6), can be driven by the primary transformer unit and the primary power converter unit.
Abstract:
A system includes a prime engine connected to a prime engine exhaust stack that receives prime engine exhaust, a mixing duct section connected to the prime engine exhaust stack, a head-end power (HEP) generator connected to an HEP generator exhaust pipe that receives HEP generator exhaust, a single urea injector, and a selective catalytic reduction (SCR) system. The HEP generator exhaust pipe is connected to the mixing duct section, and the single urea injector injects urea into the HEP generator exhaust pipe upstream of the mixing duct section. The HEP generator exhaust and prime engine exhaust merge in the mixing duct section to form a merged exhaust that is received by the SCR system.
Abstract:
An electric locomotive includes a first control line and DC buses laid between couplers, a power storage device connected to the DC buses, and a DC/DC converter that executes charge and discharge control with respect to the power storage device. A non-powered vehicle includes DC buses connected to the DC buses via a coupler, a second control line, a power storage device connected to the DC buses via a circuit breaker, and a BMU that manages the power storage device. The DC/DC converter executes power accumulation control with respect to the power storage device and power accumulation control with respect to the power storage device. When having determined abnormality of the power storage device, the BMU controls the circuit breaker to be turned off, thereby cutting off electrical connection between the power storage device and the DC buses.
Abstract:
Power systems for an independent carrier for transport of payloads in an automation system for in vitro diagnostic (IVD) applications. The independent carrier may include an onboard power source and an onboard electrical system electrically connected to the onboard power source for controlling movement of the carrier. The independent carrier may include an onboard propulsion system electrically connected to the onboard power source for propelling the carrier and electrically connected to the onboard electrical system for receiving a command to control the movement of the carrier. Onboard power sources may include: replaceable batteries, rechargeable batteries, induction battery charging, photovoltaic power, Peltier effect power, and external combustion engines.
Abstract:
A modular locomotive UC storage system includes: at least one cabinet section in a locomotive; a plurality of vertical stacks of UC modules housed within each cabinet section, each UC module including a plurality of UC cells; wherein each UC module within each of the vertical stacks of UC modules is connected in parallel to the UC modules within the vertical stack; wherein each of the vertical stacks of UC modules are connected in series with the other vertical stacks of UC modules within each cabinet section; wherein the connections between the UC modules and between the vertical stacks of UC modules are made by bus bars located such that the UC modules electrically connect with the bus bars in an appropriate combination of series and parallel connections when the UC modules are located in position within the cabinet sections.
Abstract:
The present invention is directed to a locomotive that includes: (a) a transmission 105 operable to drive a plurality of axles; (b) an electric motor 104 operatively connected to and driving the transmission; (c) an energy storage unit 106 operable to store electrical energy and supply electrical energy to the electric motor; (d) one or more prime movers 102 operable to supply electrical energy to the energy storage unit and electric motor; and (e) a power distribution bus 109 electrically connecting the energy storage unit, prime mover(s), and electric motor. The energy storage unit and/or generator provide electrical energy to the electric motor via the power distribution bus to cause the electric motor to rotate the axles via the transmission.
Abstract:
LEVEL SENSING PROBES, LOWERED TO RESPECTIVE DIFFERENT LEVELS IN A TANK, CONTROL FLOW OF LIQUID TO THE TANK IN MEASURED VOLUMES DETERMINED BY LIQUID LEVEL IN THE TANK. FIRTH LIQUID FILLS TO LOWER PROBE LEVEL WHEREUPON AUTOMATICALLY FIRST LIQUID FEED IS STOPPED AND SECOND LIQUID FEED IS STARTED AND CONTINUED UNTIL LIQUID REACHES UPPER PROBE LEVEL WHEREUPON AUTOMATICALLY ALL FEED IS STOPPED AND PROBES ARE RAISED AWAY FROM LIQUIDS. RELAY CIRCUITS FOR AUTOMATIC CONTROL AND HOISTING APPARATUS ARE DETAILED.
Abstract:
A mobile energy supply system may include a fuel source, an energy converter, and a transfer device. The fuel source may be disposed onboard a vehicle chassis and may hold a supply of a fuel. The energy converter may be disposed onboard the vehicle chassis and may convert at least a portion of the supply of the fuel from the fuel source into electric energy. The transfer device may be disposed onboard the vehicle chassis and be electrically couplable to a propulsion vehicle. The transfer device may transfer the electric energy from the energy converter offboard of the vehicle chassis and to the propulsion vehicle for powering a propulsion system of the propulsion vehicle.