Enzymatic synthesis of kavalactones and flavokavains

    公开(公告)号:US11746364B2

    公开(公告)日:2023-09-05

    申请号:US17191051

    申请日:2021-03-03

    CPC classification number: C12P17/06 C12P7/26 C12Y301/27005

    Abstract: Disclosed are methods, compositions, proteins, nucleic acids, cells, vectors, compounds, reagents, and systems for the preparation of kavalactones, flavokavains, and kavalactone and flavokavain biosynthetic intermediates using enzymes expressed in heterologous host cells, such as microorganisms or plants, or using in vitro enzymatic reactions. This invention also provides for the expression of the enzymes by recombinant cell lines and vectors. Furthermore, the enzymes can be components of constructs such as fusion proteins. The kavalactones produced can be utilized to treat anxiety disorder, insomnia, and other psychological and neurological disorders. The flavokavains produced can be utilized to treat various cancers including colon, bladder, and breast cancers.

    OPTOGENETIC CONTROL OF MICROBIAL CO-CULTURE POPULATIONS

    公开(公告)号:US20220403429A1

    公开(公告)日:2022-12-22

    申请号:US17844835

    申请日:2022-06-21

    Abstract: Microbial consortia exert great influence over the physiology of humans, animals, plants, and ecosystems. However, difficulty in controlling their composition and population dynamics have limited their application in medicine, agriculture, biotechnology, and the environment. The approach disclosed herein provides an effective method to dynamically control population compositions in microbial consortia, which we demonstrate in the context of co-culture fermentations for chemical production. Co-culture fermentations can improve chemical production from complex biosynthetic pathways over monocultures by distributing enzymes across multiple strains, thereby reducing metabolic burden, overcoming endogenous regulatory mechanisms, or exploiting natural traits of different microbial species. However, stabilizing and optimizing microbial sub-populations for maximal chemical production remains a major obstacle in the field. An optogenetic circuit, called OptoTA, is disclosed for regulating a toxin-antitoxin system, which enables tunability of, e.g., Escherichia coli growth using only blue light. With the disclosed system, one can control population ratios of co-cultures of, e.g., E. coli and Saccharomyces cerevisiae containing different metabolic modules of biosynthetic pathways. Results reveal that intermediate light duty cycles improve chemical production by establishing optimal co-culture populations.

Patent Agency Ranking