Abstract:
A low release effort eccentric double pawl vehicle latch includes a ratchet, primary pawl, auxiliary ratchet and secondary pawl in combination with a secure lock lever. The secure lock lever selectively inhibits movement of the secondary pawl to prevent premature or unintended opening of the latch. A drive mechanism sequences movement of the secure lock lever and secondary pawl to open the latch. Upon reset, the drive mechanism drives the auxiliary ratchet back to its closed state and in the process the auxiliary ratchet can engage and return the secondary pawl back to a closed state in the event of an insufficient bias force thereon.
Abstract:
A door, a door module therefor, and a method of constructing a door for a motor vehicle is provided. The door module includes a carrier; an electrical latch secured to the carrier, and a latch control system. The latch control system has an inside micro-switch operably connected to the electrical latch via an inner electrical connector, and an outside micro-switch operably connected to the electrical latch via an outer electrical connector. Electrical communication between the electrical latch and latch control system, initiated via selective actuation of the inside and outside micro-switches, provides full normal operation of a vehicle door without need for mechanical linkages.
Abstract:
A touch and gesture pad for a swipe/tap entry verification system and a method of operating the touch and gesture pad are disclosed. The touch and gesture pad includes a housing that defines a compartment. The touch and gesture pad includes a wiring connector for attachment to a wiring harness to provide power and communication with a processing unit. A PCB is disposed in the compartment. A plurality of IR TOF sensors are disposed on and electrically connected to the PCB for sensing gestures and touches to the touch and gesture assembly. The plurality of IR TOF sensors each includes a transmitter for transmitting an infrared beam and a receiver for receiving the infrared beam after reflection from an object near one of the plurality of IR TOF sensors and for outputting an IR TOF signal to the processing unit indicating touches or gestures.
Abstract:
A power swing door actuator for moving a passenger swing door relative to a body portion of a motor vehicle. The power swing door actuator includes a housing rigidly fixed to the swing door, a motor mounted to the housing, a connector link having a first end pivotably coupled to the vehicle body portion and a second end pivotably coupled to a drive nut of a spindle drive mechanism. A leadscrew of the spindle drive mechanism is rotatably driven by the motor for causing relative translational movement between the drive nut and the leadscrew which, in turn, results in pivoting movement of the connector link while the vehicle door swings between open and closed positions in response to selective actuation of the motor.
Abstract:
A method for operating a closure panel of a vehicle, comprising: using a processor, determining whether a first proximity sensor and a second proximity sensor located on a periphery of the vehicle have been sequentially activated to indicate an object moving across the first proximity sensor and the second proximity sensor; and, controlling the closure panel to open or close when the first proximity sensor and the second proximity sensor have been sequentially activated.
Abstract:
A latch comprising: a housing having a slot for a striker; a ratchet rotationally mounted on the housing and biased for release of the striker from the slot and retaining of the striker in the slot dependent upon angular position of the ratchet with respect to the housing, the ratchet having a ratchet surface; a pawl rotationally mounted on the housing and biased towards the ratchet, the pawl having a pawl surface; and a rotatable bearing positioned between the pawl surface and the ratchet surface for rotation there between during rotation of the ratchet and the pawl, such that contact between the ratchet and the pawl is facilitated by one or more localized contact regions between an exterior surface of the bearing and adjacent respective at least one of the pawl surface or the ratchet surface; wherein the contact region is a localized contact region with respect to the exterior surface having a spheroidal shape.
Abstract:
An electromechanical strut for moving a closure member between open and closed positions relative to a vehicle body includes a housing having an inner surface bounding a cavity extending along a central axis between opposite first and second ends. A power screw is disposed in the cavity in operable communication with a motor, with a gear assembly operably connecting the motor to the power screw. An extensible member has an outer cover tube received in the housing cavity and a drive mechanism for converting rotary motion of the power screw into linear motion of the extensible member. An annular gap extends between the inner surface of the housing and an outer surface of the outer cover tube. An annular bushing is disposed within the annular gap to minimize laterally play between the housing and the outer cover tube.
Abstract:
A housing assembly for a power operated device and method of manufacturing the housing assembly are disclosed. The housing assembly includes a housing body with a motor platform and a switch platform and a connector platform each extending upwardly from the housing body. A connector is attached to the housing body in engagement with the connector platform and includes a plurality of connector terminals electrically connected to the connector platform. A plurality of traces are formed by laser directed structuring on the housing body and are electrically connected to and extend from the switch and motor platforms to the connector platform. A motor engages the motor platform for moving components of the power operated device and a switch engages the switch platform to detect the position of the components.
Abstract:
A system and method for providing access to a vehicle operation includes a first user-input interface, a second user-input interface, and a vehicle controller. The first user-input interface is configured to interact with a user via a swipe-up input. The second user-input interface is configured to interact with the user via an application independent of the swipe-up input. The vehicle controller is configured to control the vehicle operation in response to detecting a first swipe-type user-input via the first user-input interface and a second user-input via the second user-input interface within a predetermined time.
Abstract:
In an aspect, a pinch sensor is provided, comprising: an elongate non-conductive casing enclosing first, second, and third elongate conductive electrodes; the first and second electrodes being separated by a portion of the casing, a capacitance between the first and second electrodes changing when an obstacle approaches the first electrode to provide a proximity indication of the obstacle to the pinch sensor; and, the second and third electrodes being separated by an air gap formed in the casing, a resistance between the second and third electrodes changing when the second and third electrodes come into contact upon compression of the casing by the obstacle to provide a contact indication of the obstacle with the pinch sensor.