Abstract:
An image sensor includes a first photodiode with associated first sense node and a second photodiode with associated second sense node. A first transistor has its control node coupled to the first sense node and a second transistor has its control node coupled to the second sense node. The conduction paths (for example, source-drain paths) of the first and second transistors are coupled in series between first and second column lines associated with a column of the image sensor array. Switches control connection of the first and second column lines in two modes: one mode where a voltage is applied to the first column line and data from one of the photodiodes is read out by the second column line; and another mode where a voltage is applied to the second column line and data from the other of the photodiodes is read out by the first column line.
Abstract:
A method includes setting a first indicator to a first value, which causes an apparatus to stop receiving traffic from a traffic source. At least one register is accessed to read or write at least one new value, and a second indicator is set indicating that accessing of the at least one register has completed. The first indicator is set to a second value. When the first indicator has the second value and the second indicator is set, the apparatus is again allowed to receive traffic from the traffic source.
Abstract:
A system for designing Network-on-Chip interconnect arrangements includes a Network-on-Chip backbone with a plurality of backbone ports and a set of functional clusters of aggregated IPs providing respective sets of System-on-Chip functions. The functional clusters include respective sub-networks attachable to any of the backbone ports and to any other functional cluster in the set of functional clusters independently of the source map of the Network-on-Chip backbone.
Abstract:
An electronic device includes a substrate wafer made of an insulating material and having an electrical connection network. An integrated circuit chip is mounted to a top side of the substrate wafer. The substrate wafer contains an internal duct. The duct is formed by a covered trench located in the top side of the substrate wafer. The trench contains a thermally conductive material, for example being a fluid. Openings in the top side of the substrate wafer that are offset from the trench permit the making of an electrical connection between the integrated circuit and the electrical connection network.
Abstract:
The disclosure relates to a method for detecting the presence of an object near a detection device, comprising: emitting pulses of an incident photon beam, detecting photodiodes which trigger avalanche after the reception by the photodiode of at least one photon of a reflected photon beam produced by a reflection of the incident beam on an object near the detection device, determining a distance between the photodiodes and an object in a detection area, as a function of the time between a transmit time of the incident beam and avalanche triggering times of the photodiodes, and correcting the distance determined as a function of a calibration measurement obtained in the absence of object in the detection area, to compensate for photon reflections on a transparent plate arranged between the photodiodes and the detection area.
Abstract:
A proximity sensor includes a radiation source configured to emit a primary radiation beam and a primary detector configured to pick up a reflected primary radiation beam. The radiation source is further configured to emit stray radiation. The sensor further includes a reference detector arranged to receive the stray radiation. The stray radiation may, for example, be emitted from either a side of the radiation source or a bottom of the radiation source.
Abstract:
An imaging device includes at least one photosite formed in a semiconducting substrate and fitted with a filtering device for filtering at least one undesired radiation. The filtering device is buried in the semiconducting substrate at a depth depending on the wavelength of the undesired radiation.
Abstract:
A method and corresponding device for processing a frequency-modulated analog signal are disclosed. The signal includes a number of symbols belonging to a set of M symbols respectively associated with at least one frequency of a set of M frequencies. The method includes a phase of reading each symbol of the signal that includes a sampling of a signal portion corresponding to the duration of a symbol and delivering N samples (M being less than N). M individual discrete Fourier transform processing operations are performed on the N samples. Each individual processing operation is associated with each of the frequencies. The M individual processing operations deliver M processing results. The value of the symbol can be determined from the M processing results.
Abstract:
Generating by a digital processing device, of a first digital image from a second digital image, by: for each pixel of the second image, determining a pixel luminance; dividing the interval ranging from the lowest to the highest luminance into a plurality of sub-intervals; and determining the value of at least one pixel of the first image by multiplying the value of a pixel of the second image by a gain determined by interpolation by taking into account the distance of the pixel luminance of the second image to the limits of the sub-interval containing this luminance.
Abstract:
An apparatus includes a first clock source, a second clock source and circuitry configured to supply a clock signal to a circuit. The circuitry operates to change the clock signal from one frequency to another different frequency. This change is made in a manner whereby no clock signal is supplied during a period of time when the change from the one frequency to the another different clock frequency is being made.