Abstract:
An exhaust treatment system may include a burner, a flame sensor assembly and a control module. The flame sensor assembly may be at least partially disposed within the burner and may include an insulator and an electric heating element in heat transfer relation with the insulator. The control module may be in communication with the flame sensor assembly. The control module may determine whether a flame is present in a combustion chamber based on feedback from the flame sensor assembly. The control module may detect contamination on the insulator based on feedback from the flame sensor assembly. The control module may operate the heating element in a first mode in response to detection of a contamination in which the control module causes electrical power to be applied to the heating element to raise a temperature of the heating element to burn contamination off of the insulator.
Abstract:
A hydraulic actuator includes a shock absorber and a control system that is separate from the shock absorber and which generates damping loads for the hydraulic actuator. The control system generates the damping load by using a pair of variable valves, a pair of check valves, an accumulator, a pump/motor and a flow controller. The forces are generated in all four quadrants of compression/rebound and active/passive. A device which recuperates the energy generated by the hydraulic actuator can be incorporated into the hydraulic actuator to generate energy in the form of electrical energy.
Abstract:
An exhaust gas treatment system for reducing emissions from an engine includes an exhaust conduit adapted to supply an exhaust stream from the engine to an exhaust treatment device. The conduit includes an aperture. An injector injects a reagent through the aperture and into the exhaust stream. A flow modifier is positioned within the exhaust conduit upstream of the injector. The flow modifier includes a diverter for increasing the velocity of the exhaust gas at a predetermined location within the conduit relative to the injected reagent.
Abstract:
A burner for an exhaust gas treatment system includes a tubular inner housing having a closed upstream end, a reduced diameter portion, and a plurality of apertures downstream of the reduced diameter portion. An outer housing surrounds the inner housing comprising a bypass flow path therebetween. First and second tubular supports fix the upstream end of the inner housing to the outer housing and provide fluid communication between a cavity within the inner housing to a location outside of the outer housing. A plate fixes the downstream end of the inner housing to the outer housing and cooperates with the housings to partially define an aperture formed in a portion of the bypass flow path.
Abstract:
A shock absorber has a compression valve assembly that provides a high damping load during a compression stroke and an extension valve assembly that provides a high damping load during an extension stroke. One or more digital valve assemblies is positioned to work in parallel with the compression valve assembly and the extension valve assembly to provide a lower damping load. The lowering of the damping load is based upon the cross sectional area of flow passages provided by the one or more digital valve assemblies.
Abstract:
An exhaust after-treatment system for treating an exhaust produced by an engine, including an exhaust passage in communication with the engine; an injector for dosing an exhaust treatment fluid into the exhaust passage, a mixing device positioned downstream from the injector, the mixing device operable to intermingle the exhaust treatment fluid and the exhaust; an irregularly-shaped exhaust treatment substrate positioned downstream from the mixing device; and a dispersion device positioned between the mixing device and the irregularly-shaped exhaust treatment substrate. The dispersion device includes a plurality of dispersion members each being operable to direct an exhaust stream flowing through the dispersion device into a plurality of different directions to disperse the exhaust flow over substantially an entire surface of the irregularly-shaped exhaust treatment substrate.
Abstract:
An exhaust treatment system includes an exhaust treatment device. The exhaust treatment device includes a shell, and a sensor boss configured to support a sensor device is mounted to the shell. A Pitot tube that is configured to communicate exhaust to the sensor device is coupled to the sensor boss at a proximate end thereof, while a distal end is affixed to the shell of the exhaust treatment device to prevent detachment of the Pitot tube from the sensor boss, and ensure that exhaust gases are effectively communicated to the sensor device.
Abstract:
An exhaust system component comprises a housing including an inner surface having a first longitudinal axis, a core positioned within the housing and including an outer surface circumferentially extending about a second longitudinal axis offset from the first axis, and a mat positioned within the housing and compressed between the core and the housing. The mat is wrapped about an outer surface of the core more than one revolution such that a first circumferentially extending zone exists where the mat is x layers thick and a second circumferentially extending zone exists where the mat is x+1 layers thick. The second longitudinal axis is offset from the first longitudinal axis in a direction toward the first circumferentially extending zone.
Abstract:
A muffler assembly for a vehicle exhaust system including a muffler that has a primary muffler conduit with a primary resonator, a secondary muffler conduit with a secondary resonator, and a valve that directs exhaust flow through both the primary and secondary muffler conduits or primarily through the secondary muffler conduit depending on the position of the valve. The muffler provides a first level of sound attenuation when the valve is in an open position and a second level of sound attenuation when the valve is in a closed position. The second level of sound attenuation is greater than the first level of sound attenuation and therefore the muffler provides a louder exhaust sound when the valve is in the open position and a quieter exhaust sound when the valve is in the closed position.
Abstract:
A damper including a pressure tube, a piston, and a reserve tube is provided. The piston is arranged inside the pressure tube and divides the pressure tube into first and second working chambers. The reserve tube extends about the pressure tube to define a reserve tube chamber between the pressure tube and the reserve tube. A first damper port is arranged in communication with the second working chamber and a second damper port is arranged in communication with the reserve tube chamber. A remote valve assembly is spaced from the damper. The remote valve assembly includes a first electromagnetic valve that is arranged in communication with the first damper port by a first hydraulic line and a second electromagnetic valve that is arranged in communication with the second damper port by a second hydraulic line. An accumulator is arranged in communication with the first and second electromagnetic valves.