Abstract:
Display backlight structures may provide backlight illumination that passes through display layers in the display. Light-emitting diodes may emit blue light into an edge of a light guide plate. Optical films may overlap the light guide plate. The optical films may include a quantum dot enhancement film. A peripheral strip of yellow reflector or other light control structures may be incorporated into the backlight structures to reduce blue edge effects. The light control structures may have features with a spatially varying density, may be formed from quantum dot enhancement film, or may be formed form other structures. The light control structures may be formed on the surfaces of the optical films, on a reflective layer under the light guide plate, or on a surface of a mold frame or other structure that lies in a plane parallel to the plane of the light guide plate.
Abstract:
An electronic device may have a liquid crystal display with backlight structures. The backlight structures may produce backlight that passes through an array of display pixels. The display pixels may include electrode structures and thin-film transistor structures for controlling electric fields in a layer of liquid crystal material. The liquid crystal material may be formed between an outer display layer and an inner display layer. The inner display layer may be interposed between the backlight structures and the liquid crystal material. Thin-film transistor structures, electrodes, and conductive interconnection lines may be deposited in a layer on the inner surface of the outer display layer. A layer of color filter elements may be used to provide the display with color pixels. The color filter elements may be formed on top of the thin-film transistor layer or on a separate color filter array substrate such as the inner display layer.
Abstract:
An electronic device may have a housing. Electrical components such as a display and other circuitry may be mounted in the housing. The housing may have portions that move with respect to each other such as a lid that rotates relative to a base. A flexible printed circuit may have metal lines that couple components in one portion of the housing to components in another portion of the housing. As the housing portions move with respect to each other, the flexible printed circuit bends. Reliability may be enhanced for the flexible printed circuit by providing the metal layer that forms the metal lines with upper and lower coating layers. The coating layers may be formed from metal with a higher Young's modulus than a metal core in the metal layer. A slot may be formed along the length of the flexible printed circuit to help increase the minimum bend radius exhibited by the flexible printed circuit. Upper and lower metal shield layers may be provided above and below the metal traces.
Abstract:
A display may have an array of pixels that display images for a user. The backlight unit may have a light-guide layer. An array of light-emitting diodes may emit light into an edge of the light-guide layer. The light guide layer may overlap a backlight reflector. The backlight reflector may include a backlight reflector panel formed from a stack of dielectric layers on a rectangular substrate. The backlight reflector may also include a strip of backlight reflector tape having an edge that is overlapped by an edge portion of the backlight reflector panel. Color compensating features such as printed colored ink patterns may be formed on the backlight reflector to adjust the color of backlight illumination in portions of the backlight unit adjacent to the light-emitting diodes.
Abstract:
A display may store extended display identification data for communicating the capabilities of the display to a source device such as a graphics processing unit. The extended display identification data may include a red primary color value, a green primary color value, and a blue primary color value. The primary color values in the extended display identification data may be determined during manufacturing. For example, a light sensor may measure the native primary colors of the display, and calibration computing equipment may determine if the native primary colors of the display are within a target color gamut. If the native primary colors of the display are outside of the target color gamut by an amount larger than a threshold, the primary color values in the extended display identification data may be adjusted to account for the color variation.
Abstract:
A display may have an active area surrounded by an inactive border area. The inactive border area may be provided with an opaque masking material. The display may be a liquid crystal display having a liquid crystal layer sandwiched between a color filter layer and a thin-film transistor layer. Upper and lower polarizers may be provided above and below the color filter and thin-film transistor layers. The upper polarizer may have a polarized central region that overlaps the active area of the display. The upper polarizer may also have an unpolarized portion in the inactive border area overlapping the opaque masking material. The opaque masking material may alternatively be formed on the underside of a clear polymer substrate that is attached to the display above the upper polarizer or may be incorporated within the layers that make up the upper polarizer.
Abstract:
An electronic device may have a display. Inactive portions of the display may be masked using an opaque masking layer. An opening may be provided in the masking layer. A camera may receive light through the opening in the opaque masking layer. The display may include upper and lower polarizers, a color filter layer, and a thin-film transistor layer. The upper polarizer may have an unpolarized window aligned with the opening in the opaque masking layer for the camera, a logo, or another internal structure. The unpolarized window may be formed from openings in polarizer layers such as a polyvinyl alcohol layer and optical retarder layers. The openings may pass through all or less than all of the polarizer layers. The openings may be filled with transparent filler material. The polarizer may include a try-acetyl cellulose layer that continuously covers the opening in other polarizer layers.
Abstract:
Electronic devices may be provided with display structures such as glass and polymer layers in a liquid crystal display. The glass layers may serve as substrates for components such as a color filter layer and thin-film transistor layer. The polymer layers may include films such as a polarizer film and other optical films. During fabrication of a display, the polymer layers and glass layers may be laminated to one another. Portions of the polymer layers may extend past the edges of the glass layers. Laser cutting techniques may be used to trim away excess portions of the polymer layer that do not overlap underlying portions of the glass layers. Laser cutting may involve application of an adjustable infrared laser beam.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A liquid crystal layer may be located between the color filter layer and the thin-film transistor layer. The display may have an active area surrounded by an inactive area. The opaque border layer may contain first and second opaque layers in the inactive area. The first opaque layer may have an opening in the inactive area that is overlapped by an isolation layer. The second opaque layer may be located in the inactive area and may overlap the opening in the first opaque layer to block light in the inactive area. The isolation layer may be interposed between the first and second opaque layers and may prevent static charge from an electrostatic discharge event along the edge of the display from migrating to the active area through the opaque border in the inactive area.
Abstract:
An electronic device may have a housing in which a display is mounted. A gasket may be mounted in a groove between the display and housing. The gasket may contain an embedded stiffener. Corner brackets may be installed in the corners of the housing. The housing may have inner and outer concentric ribs. Recesses in the housing may be configured to receive the corner brackets. The recesses may be formed between the inner and outer concentric ribs. Gap filling structures such as a foam layer may be interposed between a rear housing wall and a display backlight unit. Display color variations may be corrected by using a backlight unit having an array of light-emitting diodes of different colors. An electrostatic discharge protection layer may be grounded to a housing using conductive tape. Black edge coatings and adhesive-based structures may block stray light. Camera window regions may be supported using adhesive.