Abstract:
Methods, apparatuses, computer program products, devices and systems are described that carry out accepting at least one telephone communication from at least one member of a network; disambiguating the at least one search term including associating the at least one search term with at least one of network-participation identifier data or device-identifier data; and presenting the sender profile in association with the at least one telephone communication.
Abstract:
Embodiments disclosed herein relate to systems including a limbed vehicle having a plurality of controllably movable limbs (e.g., a limbed machine, limbed robot, etc.), a plurality of spaced posts that the limbed vehicle may travel on using the limbs, and at least one logistical-support unit associated with at least one of the posts and configured to provide logistical support to the limbed vehicle. As non-limiting examples, such disclosed embodiments of systems may be used to service an agriculture field, to enable travel over an environmentally-sensitive area or an area impassable by a conventional wheeled or tracked vehicle, and may be used in many other different applications. Embodiments disclosed herein also relate to limbed vehicles configured to receive logistical support from a logistical-support unit, methods of providing logistical support to such limbed vehicles, post networks, and posts.
Abstract:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance a user's ability to operate or function in a transportation-related context as a pedestrian or a vehicle operator. In one embodiment, the AEFS is configured perform vehicular threat detection based at least in part on analyzing image data. An example AEFS receives data that represents an image of a vehicle. The AEFS analyzes the received data to determine vehicular threat information, such as that the vehicle may collide with the user. The AEFS then informs the user of the determined vehicular threat information, such as by transmitting a warning to a wearable device configured to present the warning to the user.
Abstract:
Exemplary methods, systems and components enable an enhanced direct-viewing optical device to make customized adjustments that accommodate various optical aberrations of a current user. In some instances a real-time adjustment of the transformable optical elements is based on known corrective optical parameters associated with a current user. In some implementations a control module may process currently updated wavefront measurements as a basis for determining appropriate real-time adjustment of the transformable optical elements to produce a specified change in optical wavefront at an exit pupil of the direct-viewing device. Possible transformable optical elements may have refractive and/or reflective and/or diffractive and/or transmissive characteristics that are adjusted based on current performance viewing factors for a given field of view of the direct-viewing device. Some embodiments enable dynamic repositioning and/or transformation of corrective optical elements based on a detected shift of a tracked gaze direction of a current user of the direct-viewing device.
Abstract:
Systems, devices, and methods are described for tracking, registering, etc. of medical staff, patients, instrumentation, events, or the like according to a treatment staging plan. For example a medical apparatus includes a right-patient verification device having an interrogation interface device that elicits at least one of identification data, authorization data, or treatment plan data from a medical procedure authorization device associated with a patient; and a right-site verification device that generates patient-specific treatment staging data consistent with the at least one of the identification data, the authorization data, or the treatment plan data.
Abstract:
Systems, devices, methods, and compositions are described for providing an x-ray shielding system including a flexible layer including a support structure having a plurality of interconnected interstitial spaces that provide a circulation network for an x-ray shielding fluid composition.
Abstract:
Described embodiments include a system, method, and computer program product. In a described system, a receiver circuit receives at least two reference images of a patient body part. Each reference image includes a respective landmark subsurface feature of the patient body part, and each imaged landmark subsurface feature has a respective spatial relationship to a respective region of a surface of the patient body part imaged during a medical examination. A feature matching circuit determines a correspondence between (x) each atlas landmark subsurface feature of the patient body part included in a landmark subsurface feature atlas and (y) each respective imaged landmark subsurface feature. A reporting circuit generates informational data reporting a depiction of an area of the surface of the patient body part by at least two adjacent imaged regions of the surface of the patient body part. A communication circuit outputs the informational data.
Abstract:
Described embodiments include a system, method, and computer program product. A described system includes an image coregistration circuit that coregisters a first depiction of a region of interest of a mammalian body part during a first condition by a reference medical image and a second depiction of the region of interest of the mammalian body part during a second condition by a target medical image. The coregistration is at least partially based on the first spatial relationship and on the second spatial relationship. The described system includes a computer-readable media configured to maintain informational data corresponding to the coregistration of the first depiction of the region of interest and the second depiction of the region of interest.
Abstract:
Systems, devices, methods, and compositions are described for providing an actively controllable shunt configured to, for example, monitor, treat, or prevent an infection.
Abstract:
Described embodiments include a system, method, and computer program product. A described system includes a receiver circuit that receives at least two reference images that each includes a respective landmark subsurface feature of a mammalian body part; and that receives data indicative of a respective spatial relationship among each respective landmark subsurface feature. The system includes a coordinate analysis circuit that determines a common frame of reference at least partially based on a landmark subsurface feature included in a reference image. The system includes a registration circuit that registers the respective landmark subsurface feature of the mammalian body part included in each reference image. The registration is based on the determined common frame of reference and on the data indicative of a respective spatial relationship. The system maintains informational data corresponding to the registration of the respective landmark subsurface features of the mammalian body part in a computer-readable media.