Abstract:
In one embodiment, a floating body field-effect transistor includes a pair of source/drain regions having a floating body channel region received therebetween. The source/drain regions and the floating body channel region are received over an insulator. A gate electrode is proximate the floating body channel region. A gate dielectric is received between the gate electrode and the floating body channel region. The floating body channel region has a semiconductor SixGe(1-x)-comprising region. The floating body channel region has a semiconductor silicon-comprising region received between the semiconductor SixGe(1-x)-comprising region and the gate dielectric. The semiconductor SixGe(1-x)-comprising region has greater quantity of Ge than any quantity of Ge within the semiconductor silicon-comprising region. Other embodiments are contemplated, including methods of forming floating body field-effect transistors.
Abstract:
A variable-resistance material memory array includes a series of variable-resistance material memory cells. The series of variable-resistance material memory cells can be arranged in parallel with a corresponding series of control gates. A select gate can also be disposed in series with the variable-resistance material memory cells. Writing/reading/erasing to a given variable-resistance material memory cell can include turning off the corresponding control gate, while turning on all other control gates. Various devices can include such a variable-resistance material memory array.
Abstract:
A slurry for polishing a phase change material, such as Ge—Sb—Te, or germanium-antimony-tellurium (GST), includes abrasive particles of sizes that minimize at least one of damage to (e.g., scratching of) a polished surface of phase change material, an amount of force to be applied during polishing, and a static etch rate of the phase change material, while optionally providing selectivity for the phase change material over adjacent dielectric materials. A polishing method includes applying a slurry with one or more of the above-noted properties to a phase change material, as well as bringing the polishing pad into frictional contact with the phase change material. Polishing systems are disclosed that include a plurality of sources of solids (e.g., abrasive particles) and provide for selectivity in the solids that are applied to a substrate or polishing pad.
Abstract:
Some embodiments include apparatus and methods having a memory element configured to store information and an access component configured to allow conduction of current through the memory element when a first voltage difference in a first direction across the memory element and the access component exceeds a first voltage value and to prevent conduction of current through the memory element when a second voltage difference in a second direction across the memory element and the access component exceeds a second voltage value, wherein the access component includes a material excluding silicon.
Abstract:
Some embodiments include methods of forming memory cells. Chalcogenide is formed over a plurality of bottom electrodes, and top electrode material is formed over the chalcogenide. Sacrificial material is formed over the top electrode material. A plurality of memory cell structures is formed by etching through the sacrificial material, top electrode material and chalcogenide. Each of the memory cell structures has a cap of the sacrificial material thereover. The etching forms polymeric residue over the sacrificial material caps, and damages chalcogenide along sidewalls of the structures. The sacrificial material is removed with an HF-containing solution, and such removes the polymeric residue off of the memory cell structures. After the sacrificial material is removed, the sidewalls of the structures are treated with one or both of H2O2 and HNO3 to remove damaged chalcogenide from the sidewalls of the memory cell structures.