Abstract:
A data reading path management architecture for a memory device, particularly of the non-volatile type, comprising a memory matrix and data sensing component that are adapted to receive the data of the memory matrix for reading, which has the particularity that the memory matrix is divided into at least two half-matrices. Each one of the two half-matrices has a reference line that is adapted to constitute a reference for reading the other half-matrix. The data sensing component receives the data from one half-matrix and the reference from the other half-matrix and is adapted to transmit, according to a control timing, the data on an internal bus.
Abstract:
The invention relates to a voltage regulator connected between first and second voltage references and having an output terminal for delivering a regulated output voltage. The voltage regulator includes at least one voltage divider, connected between the output terminal and the second voltage reference, and a serial output element connected between the output terminal and the first voltage reference. The voltage divider is connected to the serial output element by a first conduction path which includes at least one error amplifier whose output is connected to at least one driver for turning off the serial output element. The voltage regulator includes, between the voltage divider and the serial output element, at least a second conduction path for turning off the serial output element according to a value of the regulated output voltage in advance of the action of the first conduction path.
Abstract:
A method for detecting redunded defective addresses in a memory device with redundancy including at least one memory register for storing at least one defective address. The memory register includes a plurality of memory units each one storing a defective address bit and comparing the defective address bit with a respective current address bit supplied to the memory device; the memory register activates a respective redundancy selection signal when the current address coincides with the defective address stored therein. The method provides for: activating a forcing signal for forcing the activation of the redundancy selection signal to be independent of the coincidence of a first group of current address bits, associated to a respective first group of the memory units, with the defective address bits stored in the respective first group of memory units; scanning all the possible configurations of a second group of current address bits associated with a second group of the memory units and sequentially supplying the memory device with all the configurations; detecting a configuration of the second group of current address bits for which the redundancy selection signal is activated; while supplying the memory device with the configuration of the second group of current address bits, deactivating the forcing signal and sequentially supplying the memory device with a scanning of all the possible configurations of the first group of address bits; detecting a configuration of the first group of current address bits for which the redundancy selection signal is activated.
Abstract:
A circuit protects against electrostatic discharge and includes a transistor connected to the circuit to be protected. A semiconductor body of a first conductivity type serves as the collector. A first doped region of a second conductivity type is contained in the semiconductor body and serves as the base. A second doped region of the first conductivity type is contained in the first doped region and serves as the emitter. The first doped region includes a generally H-shaped doped region and a generally ring-shaped doped region forming an opening in which the second doped region serving as the emitter is received. The H-shaped doped region has a deeper junction surface than the junction surface of the ring-shaped doped region, and a dopant concentration that is less than the dopant concentration of the ring-shaped doped region. The H-shaped doped region achieves a low collector-to-base breakdown voltage and the ring-shaped doped region achieves a low snap-back voltage. A method for forming the transistor is also disclosed.
Abstract:
An interpolation filter for video signals includes four circuits to improve video quality in both intra-field and inter-field modes. The interpolation filter is configured to interpolate according to the direction of an image edge. The interpolation filter is also configured to interpolate in a prescribed spatial direction when no image edges can be univocally determined. The first circuit detects an image edge of discrete image elements to generate a first signal. The second circuit uses output from the first circuit to generate a first signal corresponding to an average of the discrete image elements along a direction of the image edge. The third circuit uses output from the first circuit to detect a texture image area wherein an image edge cannot be univocally determined and for generating a second signal depending on a degree of existence of the image edge. The fourth circuit is supplied by the first signal, the second signal and a third signal. The fourth circuit generates an output signal obtained by combining the first signal with the third signal in a proportion dependent upon the second signal. Additionally, the fourth circuit is configured for multiplexing to selectively couple the third signal to a fourth signal, corresponding to an average of the discrete image elements along a prescribed direction, or to a fifth signal corresponding to a previously received image element value.
Abstract:
A voltage regulator for electrically programmable non-volatile semiconductor memory devices of the type comprising a gain stage (3), supplied by a programming voltage (Vpp) and having an input terminal connected to a divider (6) of said programming voltage (Vpp) and an output terminal (U) connected to a programming line (5) of at least one memory cell (2) comprises at least one circuit element (4) capable of adapting the line programming voltage (5) to the length (L) of the memory cell (2). This provides a drain voltage, on the bit line of the memory device, which varies according to the actual length of the memory cell.
Abstract:
A troubleshooting circuit for locating malfunctions while driving an electric load by means of a bridge stage (M1, M2, M3, M4) which is connected between ground (GND) and the power supply (+VCC) in series with first and second resistors (Rsl, Rsh), respectively. First (COMP1) and second (COMP2) threshold comparators are coupled to the first resistor to sense a short-circuit to battery (+VCC) and an open-load condition, respectively. Coupled to the second resistor is a third threshold comparator (COMP3) adapted to sense a short-circuit to ground. The output signals from the comparators are sampled through flip-flops (FF1, FF2, FF3, FF4, FF5, FF6) upon a transistor in the bridge being switched to the off state.
Abstract:
A semiconductor memory device includes: a matrix of memory cells including a plurality of rows of memory cells; first means for generating a first internal timing signal activated upon changing of a current address supplied to the memory device, the first timing signal remaining activated for a prescribed time substantially at the beginning of a read cycle of the memory device; row address decoding means supplied by the current address for selecting a row of memory cells; second means for storing defective addresses of defective rows in the matrix of memory cells, for comparing the defective addresses with a current address supplied to the memory device, for selecting a redundancy row when the current address coincides with one of the defective addresses and for correspondingly deactivating the row address decoding means to prevent the selection of the defective row. The memory device includes redundancy control means supplied by the first timing signal, the redundancy control means enabling said row address decoder means at the beginning of the read cycle independently of the current address and maintains the row address decoder means enabled until the first timing signal is deactivated.
Abstract:
The process described requires the formation of floating-gate non-volatile memory cells entirely similar in structure to those produced by known processes. The process comprises an annealing treatment at relatively low temperature (430.degree. C.) to repair damage due to plasma treatments. To obtain threshold voltage values for the cells close to the theoretical values, especially for cells with particularly extended interconnections, the cells are subjected to ultraviolet radiation before the annealing treatment, in order to neutralize any electrical charges present in the floating-gate electrodes of the cells.
Abstract:
The circuit includes a memory element connected to an enabling input receiving an enabling signal, and in turn including a first reset circuit receiving an internal reset signal, and a second reset circuit receiving an external timing control signal, to generate an operating step enabling signal having a first switching edge on receiving the enabling signal, a second switching edge on receiving the reset signal, and a third switching edge on receiving the external timing control signal. A control input receives a timing mode signal, and is connected to the first and second reset circuits to enable them selectively. By enabling the second reset circuit and supplying the external timing control signal, in successive cycles, with different delays in relation to the enabling signal, different readings of the memory are enabled to characterize the response and optimize the timing of the memory device.