Abstract:
The disclosed embodiments relate to an electronic circuit for a motor-driven door of a rail vehicle, said electronic circuit having a series circuit of a first non-linear element and a first controllable switch between the motor terminals. The first non-linear element is poled such that the resistance thereof to a current generated by the drive motor during a closing movement of the door is greater than during an opening movement. If a supply voltage for the door is present, the resistance of the first switch is effected relative to the resistance when said supply voltage is absent. The invention further relates to a door module for a rail vehicle having such an electronic circuit, to a rail vehicle for such a door module, and to a use of the electronic circuit.
Abstract:
The main door for the control of the access opening to a compartment, particularly a garage compartment, comprises: a fixed portion associable with the access opening of a compartment; a mobile portion including a leaf associated in a mobile way with the fixed portion; at least a pulley on which winds up a cable connected to the leaf and to a counterweight; an operating shaft of the pulley mounted on the fixed portion; a winding-unwinding device having a flexible element which can be wound and unwound which is associated with the top of the leaf; an electric motor mounted on the fixed portion and suitable for placing a driving shaft in rotation; and a transmission and distribution having a first electromagnetic clutch to transmit motion from the driving shaft to the operating shaft and a second electromagnetic clutch to transmit motion from the driving shaft to the winding-unwinding device.
Abstract:
Provided are a railroad vehicle that makes it possible to maintain the air tightness of a door and a plug door for a railroad vehicle. A second rail is provided parallel to a first rail in the longitudinal direction of a vehicle body above the leading edge side (door side) of a plug rail. The second rail supports the leading edge side of the plug rail. As a result, both edges of the plug rail are supported by the first rail and the second rail. Dangling of the leading edge side of the plug rail is thus prevented even when the plug distance (the distance that the door moves in the vehicle body width direction) is long. In this way, it is possible to block the doorway without leaving a gap using the door and to maintain the air tightness of the door.
Abstract:
A folding façade or folding awning arrangement includes at least two façade or awning elements, wherein a first façade or awning element is fixed on a building so that it can pivot about an axis, and wherein a second façade or awning element is pivotally held about a second displaceable axis and can be displaced along guides by way of a drive member, and wherein further a first collapsing edge of the first façade or awning element is pivotally connected to a second collapsing edge of the second façade and awning element to form a collapsing joint and can be moved in a manner released from the guides, collapsing transversely to the façade. The arrangement further includes at least one collapsible/fold-out and/or locking arrangement. Safe operation is achieved in that at least one pivoting actuating element is provided in the form of a collapsing/fold-out, pulling/drawing, and/or locking arrangement.
Abstract:
A sliding door arrangement with a sliding door, a rail guiding a sliding motion of the door, and an attenuation and retraction device. The attenuation and retraction device includes a lid with a slot that is open towards the rail. The door includes a pin having an end adapted to enter the slot for interacting with attenuation and retraction device when the pin reaches an entry point of the attenuation and retraction device. The lid includes ramp portion adapted to interact with the pin such that the pin reaches further into the slot after passing the entry point as the door approaches an end position.
Abstract:
Embodiments relate to a hinge assembly in a foldable display device that provides support for a bending portion of a flexible display panel when the foldable display device in an unfolded state. The hinge assembly includes a bending portion support assembly and a sliding member that is slidable relative to the bending portion support assembly as the foldable display device is folded or unfolded. The hinge assembly also includes a surface that abuts the bending portion of the flexible display panel that defines the curvature of the flexible display panel when the foldable display device is rotated from the unfolded state.
Abstract:
A hinge device includes a first fixed tubular half-shell having a working chamber defining a longitudinal axis, a second tubular half-shell rotatable about the longitudinal axis, a pivot rotating unitarily with the latter which includes a single pass-through actuating member having a helical shape, a plunger member slidable along the longitudinal axis, and a tubular bushing having a pair of guide cam slots. A pin inserted within the pass-through actuating member is provided to allow the mutual engagement of the pivot and the bushing. The first tubular half-shell includes an end portion susceptible to rotatably support the pivot, the second tubular half-shell and the bushing are coaxially coupled to each other, and the bushing and the first tubular half-shell are mutually unitarily coupled.
Abstract:
An apparatus to facilitate vehicle door closing includes a rack gear engaging a pinion gear that are connected between the door and a hinge pillar. A spring is operatively connected to the pinion gear stores energy during a portion of a door opening motion and releases the stored energy to bias the door to close. A damper operatively connects the spring and the door to limit the door closing speed during a portion of the door closing motion. A power cinching mechanism may be operatively coupled to the door closing apparatus to assist in the final closing motion of the door.
Abstract:
A carriage, which serves for holding and shifting a separating element in a running direction along a rail, includes a carriage body that holds at least one running element and a mounting body that is slidably connected to the carriage body and is connectable to the separating element. A coupling member includes a first and second coupling element connected via a bridge member, wherein the first coupling element is slidably held in the carriage body and the second is slidably held in the mounting body. The bridge member has a first coupling surface inclined relative to the running direction which supports the carriage body or the mounting body, so that with a movement of the coupling member the carriage and mounting bodies are shifted relative to one another. The shifting device includes two inventive carriages that are guided in a rail and that are connected to a separating element.
Abstract:
Disclosed is a vehicle doors closer comprising a working unit of a vehicle doors closer, comprising a housing, having at least two mounts with clamping holes; at least two guiding elements fixed within the housing; a movable rack with a lock plate, placed within the housing of the door closer so as to move along the guiding elements; an actuation mechanism, transmission element transmitting power from the actuation mechanism to the working unit, connected with one end to the movable rack with a lock plate of the working unit, and connected to the actuation mechanism with the other end; a state detector; a control unit; and a bracket placed on the car body.