Abstract:
Antenna array calibration for wireless charging is disclosed. In one aspect, an initial calibration sequence is performed each time a wireless charging station is powered on. The initial calibration sequence utilizes a reference antenna element, which is an antenna element randomly selected from a plurality of antenna elements in the wireless charging station, to determine relative receiver phase errors between the reference antenna element and each of the other antenna elements in an antenna array. In another aspect, a training sequence is performed after completing the initial calibration sequence to determine total relative phase errors between the reference antenna element and each of the other antenna elements in the antenna array. Adjustments can then be made to match respective total relative phase errors among the plurality of antenna elements to achieve phase coherency among the plurality of antenna elements for improved wireless charging power efficiency.
Abstract:
This disclosure relates generally to radio frequency (RF) switching converters and RF amplification devices that use RF switching converters. For example, an RF switching converter may include a switching circuit that receives a power source voltage and a switching controller that receives a target average frequency value identifying a target average frequency. The switching circuit is switchable so as to generate a pulsed output voltage from the power source voltage. The switching controller switches the switching circuit such that the pulsed output voltage has an average pulse frequency. The switching controller also detects that the average pulse frequency of the pulsed output voltage during a time period differs from the target average frequency, and reduces a difference between the average pulse frequency and the target average frequency. In this manner, the effects of manufacturing variations and operational variations on the average pulse frequency can be eliminated, or at least diminished.
Abstract:
A baseband PA predistortion module, which includes a baseband combiner, a baseband PA correction circuit, and a baseband filter, is disclosed. The baseband PA correction circuit replicates behavior of an RF PA by processing a modulation data signal to provide a predistortion data signal. The behavior of the RF PA includes distortion. The modulation data signal is representative of an RF input signal to an RF PA and the predistortion data signal is representative of a correction needed at an output of the RF PA. The baseband filter receives and filters the predistortion data signal to provide a reduced predistortion data signal, such that a low frequency content of the reduced predistortion data signal is less than a low frequency content of the predistortion data signal. The baseband combiner receives and combines the modulation data signal and the reduced predistortion data signal to provide a baseband transmit signal.
Abstract:
A direct current (DC) voltage converter configured to transition between operation modes is disclosed. A voltage selection circuitry is provided in a DC voltage conversion circuit to control a buck-boost converter that generates a DC output voltage. As opposed to conventional methods of switching the buck-boost converter between a buck mode and a boost mode based on a single switching threshold, the voltage selection circuitry is configured to switch the buck-boost converter between the buck mode and the boost mode based on multiple voltage thresholds. Each of the multiple voltage thresholds defines a respective range for the DC output voltage. By controlling the buck-boost converter based on multiple voltage thresholds, it is possible to provide a smoother transition between the buck mode and the boost mode, thus reducing voltage errors in the DC output voltage and improving reliability of the DC voltage conversion circuit.
Abstract:
A configurable RF transmit/receive (TX/RX) multiplexer, which includes a group of RF TX bandpass filters, a group of RF TX switching elements, and a group of RF RX bandpass filters; is disclosed. Each of the group of RF RX bandpass filters is coupled to a first common connection node. Each of the group of RF TX switching elements is coupled between a corresponding one of the group of RF TX bandpass filters and the first common connection node, which is coupled to a first RF antenna.
Abstract:
Pilot switch circuitry grounds a hot node (an injection node) of a microelectromechanical system (MEMS) switch to reduce or eliminate arcing between a cantilever contact and a terminal contact when the MEMS switch is opened or closed. The pilot switch circuitry grounds the hot node prior to, during, and after the cantilever contact and terminal contact of the MEMS come into contact with one another (when the MEMS switch is closed). Additionally, the pilot switch circuitry grounds the hot node prior to, during, and after the cantilever contact and terminal contact of the MEMS disengage from one another (when the MEMS switch is opened).
Abstract:
A front end radio architecture is configured to provide a split band frequency arrangement that includes co-banding. The disclosed split band frequency arrangement combines a medium bandwidth filter with a small bandwidth filter to provide enough bandwidth to pass a relatively large communication band. The medium bandwidth filter has a bandwidth that is large enough to support co-banding of smaller communication bands, while also having a narrow enough bandwidth to realize a relatively steep roll-off that ensures coexistence with adjacent bands that are not co-banded. The bandwidths of the medium bandwidth filter and the small bandwidth filter overlap in bandwidth by an amount that is at least as large as the highest bandwidth signal expected to be received or transmitted. The split band frequency arrangement reduces the number of filters needed in the front end radio architecture by repurposing the small bandwidth filter, and by co-banding the smaller communication bands.
Abstract:
This disclosure includes embodiments of a tunable hybrid coupler. The tunable hybrid coupler includes a first inductive element having a first inductance, a second inductive element having a second inductance and mutually coupled to the first inductive element, a first variable capacitive element having a first variable capacitance, and a second variable capacitance having a second variable capacitance. The first variable capacitive element is coupled between a first port and a second port. The second variable capacitive element is coupled between a third port and a fourth port. The first inductive element is coupled from the first port to the third port, while the second inductive element is coupled from the second port to the fourth port. Accordingly, the tunable hybrid coupler may form an impedance matching network that is tunable to different radio frequency (RF) communication bands. The tunable hybrid coupler can be used in a tunable RF duplexer.
Abstract:
Embodiments disclosed in the detailed description relate to a pseudo-envelope follower power management system used to manage the power delivered to a linear RF power amplifier.
Abstract:
Embodiments of a tunable radio frequency (RF) diplexer and methods of operating the same are disclosed. In one embodiment, the RF diplexer includes a first hybrid coupler, a second hybrid coupler, an RF filter circuit, and a phase inversion component. Both the RF filter circuit and the phase inversion component are connected between the first hybrid coupler and the second hybrid coupler. The phase inversion component is configured to provide approximately a differential phase. The RF filter circuit is configured to provide a passband and a notch. The RF filter circuit is tunable to provide the notch on both a high-frequency side of the passband and a low frequency side of the passband. Accordingly, the tunable RF diplexer provides lower insertion losses and higher isolation regardless of whether the one of the diplexed frequency bands is set at higher frequencies or lower frequencies than the other diplexed frequency band.