Abstract:
Acoustic resonator device (1) includes an active element (6) and a support provided with a membrane (5). The active element (6) is provided with at least one piezoelectric layer (10) and is surmounted by a multilayer stack (12). The multilayer stack (12) is provided with at least three layers, including at least one layer (15) of high acoustic impedance and at least one layer (13) of low acoustic impedance. An integrated circuit including at least one such acoustic resonator device is also disclosed.
Abstract:
A filter intended to receive a discrete time signal at a sampling clock frequency, comprising a determined number, greater than 2, of filtering units, each filtering unit comprising head capacitors in a number equal to the determined number, assembled in parallel between an input terminal and the terminal of an integration capacitor; and means for connecting, in successive clock cycles in a number equal to the determined number, successively each head capacitor to the input terminal, and for then simultaneously connecting the head capacitors to the integration capacitor, and in which the successive clock cycles during which the head capacitors of a filtering unit are connected to the input terminal are offset by one clock cycle from one filtering unit to the next one.
Abstract:
A one-time programmable, dual-bit memory device comprises one MOS storage transistor having a semiconductor substrate, first and second active regions formed under the surface of the substrate being separated by a part of the substrate forming a channel region, a gate formed on the surface of the said substrate in line with the channel region and whose respective distal ends are aligned with a part of the first active region and with a part of the second active region, respectively, which gate is permanently held at ground potential, and a gate oxide layer running between the gate and the surface of the substrate. The intact or broken down state between the gate and the first active region determines a stored value of a first bit, and the intact or broken down state between the gate and the second active region determines a stored value of a second bit.
Abstract:
A method is for producing an asymmetric architecture semi-conductor device. The device includes a substrate, and in stacked relation, a first photosensitive layer, a non-photosensitive layer, and a second photosensitive layer. The method includes a first step of exposing a first zone in each of the photosensitive layers by a first beam of electrons traversing the non-photosensitive layer. A second step includes exposing at least one second zone of one of the two photosensitive layers by a second beam of electrons or photons or ions, thereby producing a widening of one of the first zones compared to the other first zone such that the second zone is in part superimposed on one of the first zones.
Abstract:
A transconductance filtering device with a flexible architecture that can selectively present a different topology and/or order beginning with the same initial structure is disclosed. For example, depending on the communications standard detected, the elementary cells of the filtering circuit required to form the adapted filter are selected and connected in such a manner as to obtain the configuration desired for the filtering means. As an example, the filter may be for use with a wireless communications system forming, in particular, a cellular mobile telephone. The filter is configurable by means of at least two elementary cells of the same structure and of controllable interconnection means each having an open or closed state.
Abstract:
The process and integrated circuit include at least one capacitor in which at least one of the electrodes is made of copper. The method includes forming a nitrogen-doped silicon carbide film between the copper electrode and the dielectric film of the capacitor.
Abstract:
A method controls electrodes for addressing a display panel having pixels distributed in lines and in columns, each addressing electrode being associated with a column in the panel, each line in the panel being successively selected for the addressing of the pixels in the line. The method includes maintaining, at least for part of the selection of each line, of at least one addressing electrode at a given reference voltage when the pixel of the line associated with the at least one addressing electrode is to be addressed, and setting to high impedance of the at least one addressing electrode between the successive selection of two lines having their pixels associated with the at least one addressing electrode which are to be addressed.
Abstract:
The method for forming the microelectronic device having at least one two or three dimensional capacitor includes creating, on a substrate, a plurality of components and a number of superimposed metal interconnection levels. An insulating layer is formed above a metal interconnection level, and a horizontal metal zone of a next metal interconnection level in which one or more of the insulating blocks created from this insulating layer are incorporated is formed therein. The zone is designed to form a lower structural part of the capacitor.
Abstract:
A microelectronic pressure sensor comprises a MOSFET transistor adapted with a mobile gate and a cavity between the mobile gate and a substrate. The sensor includes a gate actuator configured to move mobile gate in response to a pressure being exercised. A fingerprint recognition system includes a matrix of such sensors.
Abstract:
An embodiment of an image sensor comprising photosensitive cells, each photosensitive cell comprising at least one charge storage means formed at least partly in a substrate of a semiconductor material. The substrate comprises, for at least one first photosensitive cell, a portion of a first silicon and germanium alloy having a first germanium concentration, possibly zero, and for at least one second photosensitive cell, a portion of a second silicon and germanium alloy having a second germanium concentration, non-zero, greater than the first germanium concentration.