Abstract:
A sensor for monitoring a plant population in front of a harvester and a transfer process of the crop from the harvester to a transport vehicle is arranged on an unmanned aircraft. The aircraft moves in the vicinity of the harvester in the harvesting mode and communicates in a wireless fashion with a control unit that controls an actuator for influencing an operating parameter of the harvester and/or the transport vehicle (in real time based on signals of the sensor in the harvesting mode.
Abstract:
A new High Altitude Airship (HAA) capable of various extended applications and mission scenarios utilizing inventive onboard energy harvesting and power distribution systems. The power technology comprises an advanced thermoelectric (ATE) thermal energy conversion system. The high efficiency of multiple stages of ATE materials in a tandem mode, each suited for best performance within a particular temperature range, permits the ATE system to generate a high quantity of harvested energy for the extended mission scenarios. When the figure of merit 5 is considered, the cascaded efficiency of the three-stage ATE system approaches an efficiency greater than 60 percent.
Abstract:
A new fabrication method for nanovoids-imbedded bismuth telluride (Bi—Te) material with low dimensional (quantum-dots, quantum-wires, or quantum-wells) structure was conceived during the development of advanced thermoelectric (TE) materials. Bismuth telluride is currently the best-known candidate material for solid-state TE cooling devices because it possesses the highest TE figure of merit at room temperature. The innovative process described here allows nanometer-scale voids to be incorporated in Bi—Te material. The final nanovoid structure such as void size, size distribution, void location, etc. can be also controlled under various process conditions.
Abstract:
An unmanned vehicle (UV) embodiment can include a motor for movement of the UV in at least two dimensions, a receiver mechanism for receiving communication from the control station, a control unit for controlling the actuation of the motor, and memory having instructions stored thereon and executable by the control unit to, utilize environmental information to maintain the UV in a stable position and to move the UV according to control information received from the control station.
Abstract:
A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.
Abstract:
The present invention includes a drone system and kit with a modular hold. The drone, or its hold, can low-mount antennae such that the drone system lands on the antennae (or booms dimensioned to be similar thereto). Because the holds are dimensionally similar, multiple holds can be prepared, each with their own specific electronic payload, for a quick change that results in efficient utilization of proceeds.
Abstract:
Various aspects of this disclosure provide an aerial vehicle. The aerial vehicle may include a flight controller configured to control flight components of the aerial vehicle, and a radio access network base station radio head configured to allocate one or more radio resources for one more radio communication terminal devices to operate a radio cell in accordance with a mobile radio wide area network technology.
Abstract:
A base station device includes: a detection unit that detects approach of a mobile station device; a determination unit that determines whether or not the detected mobile station device is an unmanned aircraft; and a notification unit that notifies of the approach of the mobile station device in a case that it is determined that the mobile station device is an unmanned aircraft.
Abstract:
An unmanned aerial vehicle (UAV) uses a first baseband processor to establish a first communication link with a ground network cell and a second baseband processor that establishes a second communication link with a user device. The second baseband processor is communicatively coupled to the first baseband processor such that the user device exchanges communication data with the core network via the first communication link and the second communication link. Flight-control hardware steers the UAV along a flight trajectory that is determined by a ground-based UAV controller based at least on a geolocation of the user device. The second baseband processor establishes the second communication link with the user device while the first baseband processor maintains the first communication link with the ground network cell.