Abstract:
A system and method of inspecting material laid by a material placement machine. Light is directed onto the material in a direction essentially normal to the material to illuminate a section of the material. Laser energy is projected onto the section at an angle predetermined to reveal inconsistencies in the section. This system provides improved illumination for material widths exceeding six inches and is scalable for inspecting various material widths.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
A method for inspecting an object using a structured light measurement system that includes a light source for projecting light onto a surface of the object and an imaging sensor for receiving light reflected from the object. The method includes determining a position of at least one of the light source and the imaging sensor with respect to the object based on at least one of a three-dimensional model of the object and a three-dimensional model of the structured light measurement system.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
Abstract:
A programmable substance detector includes a light source, a sample cell, a programmable diffraction grating positioned to receive light from the light source and to direct diffracted light to the sample cell, and a detector associated with the cell to detect a match between a characteristic of the diffracted light and a corresponding characteristic of a substance within the cell.