Abstract:
Disclosed is a method and system for synchronizing base stations in a communication system. A mobile station receives reference base station information and base station group information, selects a synchronization correction-requiring base station from among a plurality of base stations included in a base station group corresponding to the base station group information, detects a timing offset based on reference signals received from the reference base station and synchronization correction-requiring base station, and transmits the timing offset to the synchronization correction-requiring base station so as to enable the synchronization correction-requiring base station to correct synchronization, thereby synchronizing the base stations in consideration of a real channel environment.
Abstract:
An apparatus and method for controlling emission of light are provided. The light emitting apparatus comprises a plurality of first light emitting parts which are connected with each other in series, a first current supply which supplies a current to the plurality of first light emitting parts, a plurality of switches which are respectively connected with the plurality of first light emitting parts in parallel to make the current be transmitted to or bypass the first light emitting parts and a controller which receives brightness information corresponding to the respective first light emitting parts and controls the plurality of first switches to make overall light emitting time of the first light emitting parts within time intervals correspond to a brightness level of the brightness information. The present invention provides an apparatus and method for emitting light by driving a plurality of light emitting parts to independently emit light in various brightness levels with a simplified circuit configuration and improved efficiency.
Abstract:
A display apparatus including a backlight with an LED and a brightness adjusting method which is capable of accomplishing uniform brightness across the entire display screen are provided. A display apparatus comprising a backlight comprising a plurality of LEDs and a plurality of current supplying parts respectively supplying a driving current to the LEDs, comprises a light sensor receiving light generated from the LEDs, and a controlling part controlling the current supplying parts to selectively drive the LEDs, and adjusting the amount of the driving current of the current supplying parts to be supplied to the driven LED so that the intensity of light received to the light sensor corresponds to a predetermined reference value.
Abstract:
Disclosed is an incombustible composition for a fire door/wall, the fire door/wall using the incombustible composition, and a method of producing the fire door/wall. The incombustible composition includes 1 to 80 wt % of organic or inorganic fiber, 1 to 80 wt % of fly ash or bottom ash, 1 to 80 wt % of fire-proofing agent, 1 to 30 wt % of curing fire-retardant resin, and 1 to 40 wt % of incombustible hollow filler. Furthermore, the method includes providing the incombustible composition, mixing the fly ash or bottom ash, fire-proofing agent, and curing fire-retardant resin with each other, adding the organic or inorganic fiber into a mixture, shattering the mixture containing the organic or inorganic fiber, mixing an incombustible hollow body with the shattered mixture by use of a mixer using air, pressing the resulting mixture using a high pressure hot press to form a board or a square timber, constructing a frame of the fire door/wall using the board and/or square timber, and embedding an incombustible core material into the fire door/wall. As well, 1 to 70 wt % of the incombustible composition may be made of a waste material. Accordingly, the incombustible composition is advantageous in that the production costs are reduced, and that it is useful as a construction finishing and interior material because no fire and toxic gases occur when the incombustible composition is on fire.
Abstract:
A liquid crystal display (“LCD”) device includes an LCD panel and a driving module. The LCD panel includes a plurality of pixel parts, each including a transmitting portion and a reflecting portion. The transmitting portion has a first switching element electrically connected to a first gate line, and a first liquid crystal capacitor electrically connected to the first switching element. The reflecting portion has a second switching element electrically connected to a second gate line, and a second liquid crystal capacitor electrically connected to the second switching element. The driving module applies a first common voltage to the first liquid crystal capacitor during turning-on of the first switching element, and applies a second common voltage to the second liquid crystal capacitor during turning-on of the second switching element. Therefore, an image display quality is improved.
Abstract:
A backlight assembly includes a light-generating device, a receiving container, a first heat-dissipating member, a heat-blocking member, and a second heat-dissipating member. The receiving container receives the light-generating device. The first heat-dissipating member contacts the receiving container. The heat-blocking member is disposed on the first heat-dissipating member. The second heat-dissipating member contacts the first heat-dissipating member. Therefore, liquid crystal is prevented from being deteriorated by heat generated by a light source.
Abstract:
A driving apparatus for a display device includes a signal controller synthesizing first and second signals, respectively, having first and second signal levels to output a synthesized signal having third to fifth signal levels, a signal extracting unit extracting the first and second control signals from the synthesized signal, a gate driver generating gate signals based on the first control signal, and a data driver generating data signals based on the second control signal.
Abstract:
Provided is a display apparatus that includes a light source, that further includes a current generator for outputting a predetermined driving current. Further provided is a first path for supplying the driving current output by the current generator to the light source and a second path for intercepting the driving current supplied to the light source. In addition, a switch is provided for supplying the driving current output by the current generator either to the first path or to the second path and a controller is provided for controlling the switch to supply the driving current output by the current generator to the first path while the light source is turned on, and to supply the driving current to the second path while the light source is turned off. Thus, the present invention provides a display apparatus which improves a response time of electrical current when a light source is turned on and off, and thereby improves display quality.
Abstract:
The present invention relates to a display apparatus comprising a light emitting element supplying light, and a switch to switch on and off power, which is supplied to the light emitting element. A comparing unit compares a predetermined first reference voltage and an output voltage which is proportional to a current applied to the light emitting element. A controller compares a comparison voltage output, which is a comparison result of the comparing unit and a predetermined second reference voltage, in order to control the switch to be switched on and off. Accordingly, the present invention provides a display apparatus and control method which precisely controls a size of a current applied to a light emitting element.
Abstract:
Provided are a name service system and a method thereof. The name service system includes: a name service server registering a name and corresponding network information received through a communication network when name registration is requested, and sending network information corresponding to the registered name when a name call is requested; a plurality of monitoring devices collecting information, having respective names, requesting the name registration to the name service server through the communication network, registering the name and the network information corresponding to the name in the name service server, and sending changed network information to the name service server when the registered network information changes; and a plurality of remote control management devices connecting to the name service server through the communication network to request the name call, receiving network information corresponding to the name and sent from the name service server, connecting through the communication network using the network information, and thus receiving collected information. Accordingly, it is possible to communicate in a communication network environment using a dynamic Internet protocol (IP) address with only the name of a communication connection target and no additional information, so that a system making connection easy and effective can be constructed.