Abstract:
Distributing indications of emergency messages via Wi-Fi. A cellular device may temporarily disable its cellular modem. The cellular device may receive an indication over Wi-Fi that an emergency message has been broadcast. In response, the cellular device may activate its cellular modem and retrieve the emergency message via a cellular network.
Abstract:
Apparatuses, systems, and methods for refreshing a GUTI of a UE. The UE may receive a GUTI from an AMF as part of a registration process. After a timer has expired, the UE may receive a new GUTI from the AMF. The timer may be provided by the UE as a request for use by the AMF. Alternatively, the timer may be used by the UE and the UE may request the new GUTI upon expiry of the timer, e.g., using an existing message or a new message, as desired.
Abstract:
Apparatus and methods to support emergency services through untrusted wireless networks by a user equipment (UE) are disclosed. The UE detects a request for emergency services to be provided via an untrusted wireless network. The UE de-registers from any non-emergency services and releases any existing PDN connections. The UE sends a request for emergency services to an evolved packet data gateway (ePDG) at an Internet Protocol (IP) address obtained from a table or from a domain name system (DNS) server. The request includes an indication for emergency services using a configuration attribute assigned to indicate emergency services. The UE receives from the ePDG an indication of support for emergency services in a reply to the request.
Abstract:
Techniques are disclosed relating to a mobile device that communicates over short-range networks and long-range networks. In various embodiments, a mobile device includes one or more radios configured to communicate using a plurality of radio access technologies (RATs) including a cellular RAT and a short-range RAT. The mobile device may establish a first connection and a second connection with a network such that the first connection uses the short-range RAT and the second connection uses the cellular RAT. The mobile may collect information about the second connection and communicate the collected information to the network over the first connection. In some embodiments, the information includes a base station identifier, an MCC, an MNC, the cellular RAT and a cellular information age indicating the time since the information about the second connection was collected by the UE.
Abstract:
This disclosure relates to providing local address information while roaming. A wireless device may connect to a wireless local area network (WLAN) access point in a roaming location. The wireless device may communicate with one or more servers of a home network via the WLAN access point. The wireless device may provide a local address of the wireless device to the home network in one or more messages related to a service. The home network may be configured to determine a location of the wireless device based on the local address and determine whether to provide the service based on the location of the wireless device. In response to the home network determining to provide the service based on the location of the wireless device, the wireless device may perform the service using the home network via the WLAN access point.
Abstract:
This disclosure relates to reducing or mitigating no-service delays for LTE capable wireless devices which do not have permission to access one or more LTE networks. According to some embodiments, a MME of a first PLMN may receive an LTE NAS request corresponding to a tracking area from a wireless device. The MME may determine to reject the request, and may send a rejection response to the request indicating that access to the first PLMN in the tracking area according to LTE is not available to the wireless device. The rejection response may further include extended cause information relating to whether or not the wireless device is permitted to access the first PLMN in other tracking areas according to LTE.
Abstract:
This disclosure relates to reducing or mitigating no-service delays for LTE capable wireless devices which do not have permission to access one or more LTE networks. According to some embodiments, a MME of a first PLMN may receive an LTE NAS request corresponding to a tracking area from a wireless device. The MME may determine to reject the request, and may send a rejection response to the request indicating that access to the first PLMN in the tracking area according to LTE is not available to the wireless device. The rejection response may further include extended cause information relating to whether or not the wireless device is permitted to access the first PLMN in other tracking areas according to LTE.
Abstract:
An apparatus, system, and method for performing handover of a mobile station (MS) between a base station (BS) and an access point (AP) are described. In one embodiment, the MS may receive one or more threshold values for reporting measurements to the BS. The MS may convert the threshold values to device-specific threshold values. The MS may determine one or more network quality values associated with the AP. The MS may compare the network quality values to the device-specific threshold values. In response to the network quality values exceeding the device-specific threshold values, the MS may convert the network quality values to calibrated network quality values. The MS may provide the calibrated network quality values. The MS may perform handover from the BS to the AP based on providing the calibrated network quality values to the BS.
Abstract:
A user equipment (UE) may receive charging data and use the charging data in determinations of whether to offload data from a mobile communication network, such as a 3GPP cellular network, to another wireless access network, such as a wireless local area network (WLAN). For example, the UE may receive, from the mobile communication network, charging data regarding one or more WLANs in the vicinity of the UE. The UE may also receive rules regarding whether to offload communication traffic from the cellular communication network to a particular WLAN based on charging data relating to the particular WLAN. The UE may detect one of the WLANs and determine whether to offload communication traffic to the WLAN based at least in part on the received rules and the received charging data regarding the WLAN. The determination may be further based on user preferences saved on the UE regarding the charging data.
Abstract:
A system, apparatus, and method for providing proximity services (ProSe) registration, proximity request, proximity alert, proximity request cancellation, and deregistration handling between a wireless device and a ProSe function of a cellular core network using session initiation protocol. A wireless device and a ProSe function of a cellular core network may exchange SIP signaling messages to register and de-register the wireless device for cellular network assisted proximity services. The wireless device and the ProSe function may further (while the wireless device is registered) exchange SIP signaling messages to request proximity alerts, provide proximity alerts, and request cancellation of proximity alert requests.