Abstract:
An implantable nanosensor includes a stent to be implanted inside a fluid conduit. The stent has a well in a surface of the stent. The implantable nanosensor further includes a nanoscale-patterned sensing substrate disposed in the well. The nanoscale-patterned sensing substrate is to produce an optical scattering response signal indicative of a presence of an analyte in a fluid carried by the fluid conduit when interrogated by an optical stimulus signal.
Abstract:
According to an example, an apparatus for performing spectroscopy includes a structure having an opening. The apparatus also includes a plurality of surface-enhanced Raman spectroscopy (SERS) elements positioned within the structure and a porous membrane covering the opening and the plurality of SERS elements. The porous membrane is to allow a predetermined analyte to reach the SERS elements while substantially preventing other analytes from reaching the SERS elements.
Abstract:
A configurable grating based on collapsing nano-fingers includes a substrate; and a plurality of bendable nano-fingers supported on the substrate. The nano-fingers may be formed in a regular first array and the nano-fingers may be formed in a spacing that, upon closing at their tops, forms a second array to act as an optical grating or a diagnostic tool. A method of fabricating a configurable optical grating based on collapsing nano-fingers is also disclosed, as well as a method of determining an open or closed state for a plurality of nano-fingers.
Abstract:
Certain embodiments of the present invention are directed to a method of programming nanowire-to-conductive element electrical connections. The method comprises: providing a substrate including a number of conductive elements overlaid with a first layer of nanowires, at least some of the conductive elements electrically coupled to more than one of the nanowires through individual switching junctions, each of the switching junctions configured in either a low-conductance state or a high-conductance state; and switching a portion of the switching junctions from the low-conductance state to the high-conductance state or the high-conductance state to the low-conductance state so that individual nanowires of the first layer of nanowires are electrically coupled to different conductive elements of the number of conductive elements using a different one of the switching junctions configured in the high-conductance state. Other embodiments of the present invention are directed to a nanowire structure including a mixed-scale interface.
Abstract:
An apparatus for performing surface enhanced Raman spectroscopy (SERS) includes a substrate and a plurality of nano-pillars, each of the plurality of nano-pillars having a first end attached to the substrate, a second end located distally from the substrate, and a body portion extending between the first end and the second end, in which the plurality of nano-pillars are arranged in an array on the substrate, and in which each of the plurality of nano-pillars is formed of a polymer material that is functionalized to expand in the presence of a fluid to cause gaps between the plurality of nano-pillars to shrink when the fluid is supplied onto the nano-pillars.
Abstract:
According to an example, an apparatus for performing spectroscopy includes a structure having an opening. The apparatus also includes a plurality of surface-enhanced Raman spectroscopy (SERS) elements positioned within the structure and a porous membrane covering the opening and the plurality of SERS elements. The porous membrane is to allow a predetermined analyte to reach the SERS elements while substantially preventing other analytes from reaching the SERS elements.
Abstract:
A hybrid nanostructure for molecular analysis is disclosed. The structure includes a plurality of nanofingers wherein each nanofinger is coated with a metal coating, is attached at one end to a substrate, and is freely bendable along its length such that the second ends of each nanofinger are capable of movement toward each other to form a cavity. The structure further includes a nanoparticle trapped in the cavity. An array of hybrid nanostructures and a method for fabricating the hybrid nanostructures are also disclosed.
Abstract:
An asymmetrical-nanofinger device for surface-enhanced luminescence. The device includes a substrate, and a plurality of nanofingers coupled with the substrate. The plurality of nanofingers includes a primary nanofinger having a primary active-material cap, and a secondary nanofinger having a secondary active-material cap. An average diameter of the primary active-material cap is substantially greater than an average diameter of the secondary active-material cap. The primary nanofinger and secondary nanofinger of the plurality of nanofingers are to self-arrange into a close-packed configuration with an analyte molecule disposed between the primary active-material cap and the secondary active-material cap. A method for fabricating the asymmetrical-nanofinger device, and an optical apparatus including an optical component that includes the asymmetrical-nanofinger device are also provided.
Abstract:
A semiconductor assembly is described in which a support element is constructed on a surface of a semiconductor lamina. Following formation of the thin lamina, which may have a thickness about 50 microns or less, the support element is formed, for example by plating, or by application of a precursor and curing in situ, resulting in a support element which may be, for example, metal, ceramic, polymer, etc. This is in contrast to pre-formed support element which is affixed to the lamina following its formation, or to a donor wafer from which the lamina is subsequently cleaved.Fabricating the support element in situ may avoid the use of adhesives to attach the lamina to a permanent support element. In some embodiments, this process flow allows the lamina to be annealed at high temperature, then to have an amorphous silicon layer formed on each face of the lamina following that anneal.
Abstract:
An apparatus for performing spectroscopy includes an optical waveguide comprising a fluidic channel to receive a fluid sample, in which the optical waveguide is to propagate lightwaves at a set of frequencies. The apparatus also includes a wavelength selective device coupled to the optical waveguide, in which the wavelength selective device comprises a predetermined bandwidth and is to capture frequencies of light within the predetermined bandwidth. The apparatus further includes a detector coupled to the wavelength selective device to generate signals that identify the frequencies captured by the wavelength selective device.