Abstract:
An apparatus for removing particles from a gas in a high purity flowing gas system is provided which includes a flow tube inserted inline in the flowing gas system having an inlet and an outlet, a pressure sealed, electrically insulated feed-through integral to the flow tube, an emitter inserted through the feed-through into the flow tube to create a plasma in the gas to charge particles in the gas, and a collector surface in proximity to the emitter; whereby an electric field between the emitter and the collector surface draws the particles in the gas to the collector surface. An apparatus for removing particles from a gas in a high purity gas containment vessel is also provided which includes a gas containment vessel having an inlet orifice, a pressure sealed, electrically insulated feed-through sealingly attached adjacent the inlet orifice, an emitter inserted through the feed-through into the gas containment vessel to create a plasma in the gas to charge particles in the gas; and a collector surface in proximity to the emitter, whereby an electric field between the emitter and the collector surface draws the particles in the gas to the collector surface. Methods of using the above apparatus are also provided.
Abstract:
An improvement in an electrostatic precipitator and method for removing particulate contaminants entrained in a gas stream passed through an electrode arrangement in which particulates are charged in a first electrostatic field and subjected to a second electrostatic field to be removed and collected for further disposition. The electrode arrangement includes a charging section having a charging electrode and a field electrode, and a collecting section having a repelling electrode and a collecting electrode. The field electrode and the collecting electrode are integrated, providing a relatively compact construction, and the charging electrode and the repelling electrode are electrically separated by high voltage diodes in a single power supply arrangement such that the charging section and the collecting section each are provided with a corresponding electrostatic field operated at an optimum voltage and current for respectively charging and collecting particulate contaminants entrained in the gas stream.
Abstract:
An apparatus for removing particles from a gas in a high purity flowing gas system is provided which includes a flow tube inserted inline in the flowing gas system having an inlet and an outlet, a pressure sealed, electrically insulated feed-through integral to the flow tube, an emitter inserted through the feed-through into the flow tube to create a plasma in the gas to charge particles in the gas, and a collector surface in proximity to the emitter; whereby an electric field between the emitter and the collector surface draws the particles in the gas to the collector surface. An apparatus for removing particles from a gas in a high purity gas containment vessel is also provided which includes a gas containment vessel having an inlet orifice, a pressure sealed, electrically insulated feed-through sealingly attached adjacent the inlet orifice, an emitter inserted through the feed-through into the gas containment vessel to create a plasma in the gas to charge particles in the gas; and a collector surface in proximity to the emitter, whereby an electric field between the emitter and the collector surface draws the particles in the gas to the collector surface. Methods of using the above apparatus are also provided.
Abstract:
An electric dust collecting apparatus includes at least one needle electrode for charging floating particles in air by generating a corona discharge around needle points; at least one collecting electrode provided on cell-liked arrangement corresponding to the needle electrodes, for attracting and collecting the charged floating particles by an electrostatic force; and at least one deflection electrode having a rectangularly hollow longitudinal structure having a front plate portion and side plate portions wherein the needle electrodes are fixed on the front plate portion, for applying a deflection force to the charged floating particles to move toward the collecting electrodes by a potential applied from the side plate portions, and wherein the at least one deflection electrode having the rectangularly hollow longitudinal structure is obtained by bending a profile plate punched up a sheet metal by a predetermined punch press process, accordingly, the plurality of deflection electrodes can be integratedly formed from a profile punched up from a sheet metal by the punching and bending press process, enabling the manufacturing process to have workability and productivity.
Abstract:
An electric dust collector that is capable of enhancing collection efficiency. An exhaust pipe (4) consists of a steel pipe (14) whose exterior surface is lined with refractory material (15). A supporting member (5) is supported outside the exhaust pipe (4) and is inserted into the exhaust pipe (4). A discharge electrode (7) is fixed to the supporting member (5) so that it is electrically insulated from the exhaust pipe (4). A surface electrode (6) is fixed to the discharge electrode (7) and has a pyramid-shaped mesh (6c). The mesh (6) is arranged coaxially with the exhaust pipe (4) so that it spreads within the exhaust pipe (4) toward the exit of the exhaust pipe (4). The discharge electrode (7) penetrates the center line of the surface electrode (6) and protrudes downward from the vertex of the mesh (6c). A DC high-tension power supply (8) is electrically connected to the surface electrode (6) and the discharge electrode (7) through the supporting member (5) for applying high DC voltage between the discharge electrode (7) and the pipe (14).
Abstract:
An apparatus (10) to carry out a process for the in situ generation of agglomerate structures and the controlled influencing of the resulting agglomerates contains a closed flow duct (12) through which is directed an aerosol containing particles (14). For the purpose of the bipolar charging of the aerosol, at least one electrode pair (20, 22) is arranged in the flow duct (12), the electrode (20) being wired, so as to be ungrounded, to the negative pole of a current source, the strength of which is sufficient to produce a corona discharge between the electrodes (20 and 22). The electrodes (20 and 22) of each electrode pair are designed to be needle-shaped and are arranged to be insulated with respect to the flow duct walls, such that their tips (26) are disposed opposite each other. By use of the apparatus (10), it is possible to charge the aerosol which is directed through the flow duct (12) at least virtually symmetrically bipolarly, without any substantial particle deposition in the region of the electrodes (20) and (22) or in the flow duct (12). Thus, specific agglomeration, with regard to at least one of the parameters concentration, structure or dimension, of the particles can be obtained in the flow duct during flow therethrough.
Abstract:
An electric dust-collection unit including needle electrodes for the purpose of charging particulates within the air by causing corona discharges around their tips, collector cells (collector electrodes) arranged in tubular shape corresponding to the needle electrodes for the purpose of attracting and collecting the charged particulates by static electricity, and deflecting electrodes which are arranged in such a way as to be inserted within the collector cells for the purpose of imparting a deflecting force on the charged particles in the direction of the collector cells. The deflecting electrodes being configured in the form of a hollow column including a forward plate section having a mounting hole for the purpose of fitting and retaining the needle electrode, and side plate sections facing the collector cell at a prescribed distance. While the needle electrodes are fixed on to the forward plate sections of the deflecting electrodes in such a way that their tips protrude from the surface of the forward plate sections, while their bodies are inserted firmly in the mounting hole.
Abstract:
An electrostatic precipitation system (100) utilizes laminar flow of a particulate-laden gas in order to enhance the removal of sub-micron sized particulates. The system incorporates a vertically oriented housing (105) through which the gas flows downwardly therethrough to a lower outlet port (110). The gas, which may be a flue gas enters the laminar flow precipitator (102) through an inlet port (108) for passage through a charging section (104). The charging section (104) imparts a charge to the particulates carried by the flue gas. The flue gas and charged particles then flow to a collecting section (106) which is downstream and below the charging section (104). The collecting section (106) is formed by a plurality of substantially parallel tubular members, each tubular member defining a collecting passage therein. Each tubular member (118) is electrically coupled to a potential that is of opposite polarity to that imparted to the particulates, so as to attract the charged particulates to an inner surface thereof. The collected particulates are subsequently collected in a hopper (112) or reentrained in the gas stream as agglomerates for subsequent removal from the gas by a secondary filter (120), the gas stream then being conveyed to a stack (14) wherein the particulate-free gas can be emitted into the atmosphere.
Abstract:
A gasification system for solid wastes having a thermal reactor and a mechanical gas cleaner, an indirect heat exchange cooler, and an electrostatic precipitator for cleaning and cooling the produced gas. Feed material is continuously fed to he central section of the thermal reactor above an air introduction manifold and nozzles and in an upward direction, forming a stratified charge. As feed material moves upward and outward from the reactor center it is reduced to ash. An agitator assures contact between the hot particulate product and hot gases resulting in gasification of the feed material and net movement to the sidewall of the thermal reactor, forming ash. The air introduction nozzles serve as a grate. Ash descends along the sidewall to the reactor base for removal. The mechanical cleaner has a high speed rotating brush-like gas separator element and scraper combination which removes condensed tars and particulates from the produced gas stream. The device is self cleaning in that condensed tars and particulates agglomerate on the high speed rotating bristle elements and, upon reaching adequate size and mass, are thrown off by centrifugal force to the cylindrical sidewall, where scrapers remove accumulated material which falls to the separator base for removal. An electrostatic precipitator having a cylindrical brush-like electrode suspended from one end by an insulated arm, removes remaining particles or aerosols from the product gas.
Abstract:
An electric dust collector includes a plurality of alternately arranged collecting units and accelerating units forming air flow passages therebetween. Each accelerating unit has a hole therethrough, and a plurality of wires extending across the hole in a direction perpendicularly to the direction of the air flow. The accelerating units and wires are charged with the same polarity, and the collecting units are charged with an opposite polarity.