Abstract:
The invention relates to a water treatment apparatus, method and system for use in the treatment of an open or closed body of water including water in a vessel, pipe, reservoir, river, chamber, lake or similar bodies of water, the water being retained in a water containment means being referenced or tied to ground potential, the apparatus including an energisable material defined as an active electrode being configured and arranged for placement in the body of water, the active electrode being adapted to be energised or electrostatically charged with a negative electrostatic voltage charge from a power supply means, in use, to induce and set up an electrostatic field in the water causing contaminants in the water effected by the induced charge to bond and be removed from the water.
Abstract:
Disclosed is a process for reclamation of waste fluids. A conditioning container is employed for receipt of waste material on a continuous flow for treatment within the container by immersible transducers producing ultrasonic acoustic waves in combination with a high level of injected ozone. The treated material exhibits superior separation properties for delivery into a centrifuge for enhanced solid waste removal. The invention discloses a cost efficient and environmentally friendly process and apparatus for cleaning and recycling of flowback, or frac water, which has been used to stimulate gas production from shale formations. The apparatus is mobile and containerized and suitable for installation at the well site.
Abstract:
A method and apparatus for treating water such as ballast water in ships in order to eliminate aquatic organisms in the water. The water is led under pressure through a conduit into a chamber of greater cross-section than that of the conduit so that an abrupt reduction in pressure occurs. Cavitation ensues, leading to the release of dissolved gases. Ultrasonic vibration is generated and is applied to the water, exerting a pounding effect that weakens or destroys the organisms present. Other means may be used to generate further mechanical, electrical, and chemical forces in the water which attack the organisms.
Abstract:
A portable apparatus for treating polluted water by electrocoagulation. The apparatus comprising at least two electrodes (1,2). The apparatus also includes a housing (4), electrically isolated from the at least two electrodes (1,2), to which the at least two electrodes (1,2) are fixed spaced apart from one another. When the at least two second electrodes (1,2) are at least partly submerged in the polluted water and provided with an electrical potential, one of the at least two electrodes (2) is sacrificial so as to provide ions to the polluted water.
Abstract:
An electrically powered apparatus for generating a solute such as chlorine to sanitise a body of water such as a pool or spa, a by-product of such generation being an explosive gas such as hydrogen, said apparatus including: a) an electrolytic cell (1) adapted to operate in a substantially vertical orientation through a range of 45 degrees either side of the vertical; b) a water inlet (13) and outlet (14) both located at the lower end of said electrolytic cell (1); and c) a defined space (16) surrounding one or more electrodes (28) of said electrolytic cell (1), wherein, in, the event that water flow through said apparatus ceases and said electrolytic cell (1) continues to produce said explosive gas, said explosive gas will displace water in said defined space (16) until there is no water around said electrodes (28).
Abstract:
Contaminants are removed from raw water or discharge water from plants, such as sewerage and industrial plants, by applying direct current through an array of spaced, alternately charged electrodes to eliminate or minimize clogging of the electrodes with precipitated contaminants. Polarity may be switched periodically to assist in eliminating or minimizing clogging. In illustrated embodiments, electrode arrays are contained in housings of dielectric material to form modules, To increase processing capacity, the modules are arranged in parallel arrays. Alternatively, a single module is scaled up for large or industrial applications or scaled down for personal use. Instead of housing the electrode arrays in modules through which liquid passes, the electrode arrays for some batch applications are dipped in the water or aqueous solutions.
Abstract:
A method and device for protecting an aqueous system from scale precipitation by depressing scale precipitation in a bulk phase of a water supply, the device including: (a) an electrolytic cell for fluidly connecting to the system, including: (i) a tank for receiving the water supply, the tank having a copper surface forming a cathode of the cell; and (ii) an element having a zinc surface disposed within the tank, and forming an anode of the cell; (b) a controlling unit for controlling a current (I) from the power supply; and (c) a flowmeter for measuring a flow rate of the water supply, the flow rate associated with a flow rate of water into the system, wherein the controlling unit is designed to control the current according to the flow rate so as to depress the scale precipitation in the bulk phase of the water supply, and wherein the current I exceeds (1.84−A)*Q and is less than (1.84+A)*Q, wherein I is measured in amperes; Q is the total flow rate (m3/h); and A is a positive number and less than 1.05.
Abstract:
An electrolysis cell is provided, which includes an anode electrode and a cathode electrode. At least one of the anode electrode or the cathode electrode includes a first plurality of apertures having a first size and/or shape and a second plurality of apertures having a second, different size and/or shape.
Abstract:
An apparatus and method of producing and using aluminum slurry containing aluminum particles having an extremely small size. In particular, a particle size that is small enough to freely flow through water filtration filters. Once the aluminum particles react with phosphorus, phosphates, and other contaminants, the resulting particles are large enough to be trapped by filters such that the contaminants can be easily removed. The aluminum slurry is created by the use of a unique process which rapidly transforms electrically charged aluminum plates into slurry. The resulting slurry is then added to the body of water where it disperses throughout the water and flocculates with the contaminants. The resulting clumps produced by the reaction are large enough to be trapped by filters in the water treatment facility.