Abstract:
The invention features a hybridized polynucleotide construct including a passenger strand, a guide strand loadable into a RISC complex, and one or more auxiliary moieties. At least one of the auxiliary moieties is non-bioreversibly linked to an internucleoside phosphate or phosphorothioate in the passenger strand. The invention further features methods of delivery a polynucleotide construct to a cell and methods of reducing the expression of a protein in a cell. The methods typically involve contacting the cell with the hybridized polynucleotide construct.
Abstract:
This disclosure provides systems, methods, and apparatus related to solar water splitting. In one aspect, a structure includes a plurality of first nanowires, the plurality of first nanowires comprising an n-type semiconductor or a p-type semiconductor. The structure further includes a second nanowire, the second nanowire comprising the n-type semiconductor or the p-type semiconductor, the second nanowire being a different composition than the plurality of first nanowires. The second nanowire includes a first region and a second region, with the first region having a conductive layer disposed thereon, and each of the plurality of first nanowires being disposed on the conductive layer.
Abstract:
The invention features a hybridized polynucleotide construct containing a passenger strand, a guide strand loadable into a RISC complex, and (i) a 3′-terminal or an internucleotide non-bioreversible group in the guide strand; or (ii) a 5′-terminal, a 3′-terminal, or an internucleotide non-bioreversible group in the passenger strand, and a 5′-terminal, a 3′-terminal, or an internucleotide disulfide bioreversible group in the guide strand or the passenger strand. The invention also features methods of delivering a polynucleotide to a cell using the hybridized polynucleotide construct. The invention further features methods of reducing the expression of a polypeptide in a cell using the hybridized polynucleotide construct.
Abstract:
The present invention relates to the application of isolated promoters and synthetic dominant selection constructs and enhancers for gene targeting for efficient production of genetically modified cells in a species selected from the Pucciniomycotina and Ustilaginomycotina subphyla, in particular, species selected from the Rhodosporidium, Sporisorium, Sporobolomyces or Ustilago genera.
Abstract:
A multiple laser optical assembly comprises two laser subassemblies with two lasers bonded on two bases respectively, a polarization beam combiner (PBC), a lens, a mechanical housing and an optical fiber. The two subassemblies are configured to have orthogonal polarization directions from the two lasers and are assembled coaxially. The PBC combines the orthogonal polarized beams from the two lasers. The lens focuses the combined beam and couples into the optical fiber. With such a two laser optical assembly as a building block and a wavelength division multiplexing (WDM) filter to combine the beams from two of such type of two laser optical assembly, one can further build a four laser optical assembly and extend to even more channel multiple laser optical assembly by adding more WDM filters and more similar two laser optical assemblies.
Abstract:
Flavonoid compounds that are selective for a protein, a portion or a living cell, or a portion of an organism may be used as biological imaging agents. The flavonoid compounds are useful for methods of imaging organisms such as zebrafish embryos and zebra fish. Flavonoid compounds may also be used to detect protein. Advantageously, flavonoids that selectively bind protein, a portion of a living cell, or a portion of an organism may exhibit a florescence “turn-on” mechanism, where the flavonoids that are selectively bound exhibit a florescence response when excited.
Abstract:
The devices and method are provided for detecting labeled and label-free analytes, such as nucleic acids and proteins, employing conjugated cationic, anionic and neutral polymers. The analytes can be immobilized on a solid support material. The solid support material can be disposed in the pre-fabricated patterns on a substrate. The chemical structures of the polymers employed by the various embodiments of the present invention are described herein.
Abstract:
Compositions and methods are provided for the targeted integration of a polynucleotide sequence of interest into the genome of a plant or plant cell. The methods and compositions employ recognition sites for endonucleases and endonucleases in combination with site-specific recombination sites/recombinases to provide an effective system for establishing target sites within the genome of a plant, plant cell or seed. Once such target sites are established, a variety of methods can be employed to further modify the target sites such that they contain a variety of polynucleotides of interest.