Abstract:
A method and apparatus for generating oxygenated water are shown and described. A plurality of electrolytic cells are coupled to each other and to a source of water. A volume of water is drawn from the source, and forced through at least one of the electrolytic cells at a user desired flow rate. If the demanded rate of flow at the outlet exceeds a threshold flow rate through the electrolytic cell, a valve is opened and an additional volume of water flows through the second electrolytic cell to the discharge, the rate of flow through each electrolytic cell not exceeding the selected value. Additional cells are added as needed. A varying demand of oxygenated water is therefore met, while ensuring that the dissolved oxygen content of the water at the outlet does not fall below a selected value.
Abstract:
The apparatus consists of one or more electrolytic cells containing electrodes made out of metal foils perforated with a very large number of microscopic holes, through which electrolyte is sprayed or pumped, creating a large contact area between the electrolyte and the conductive electrode material. The apparatus can be used for the production of bleaching and oxidizing liquids, both "in-line" and "off-line," for de-lignification and/or bleaching of cellulose fibers or other solids in suspension, or for oxidizing of organic compounds in liquids in connection with COD reduction or disinfection. The apparatus can also be used to create electrostatic effects on fines, colloids and chemicals in liquids, and thereby influence surface tensions, transfer of charges, electrokinetics and adsorption.
Abstract:
The invention relates to a process and an installation for the destruction of organic solutes, particularly complexing agents, present in an aqueous solution such as a radioactive effluent.According to this process, the aqueous solution undergoes electrolysis in a cell (1) comprising a working electrode (5.sub.1, 5.sub.2, etc.) by applying to said electrode an adequate potential for destroying the solutes by electrolytic oxidation and periodic modification takes place to the potential applied or to the passage direction of the current passing through the cell so as to periodically carry out a regeneration of the working electrode.The solutes can be organic acids such as formic acid, dihydroxymalonic acid or oxalic acid.
Abstract:
A method for removing contaminants from a flow of wastewater using an electrolytic oxidation vessel having a chamber and at least one elongate cathode electrode and a plurality of elongate sacrificial anode electrodes aligned parallel with the cathode electrode in the chamber. The flow of wastewater is directed through the chamber of the electrolytic oxidation vessel in a direction parallel with the cathode and anode electrodes so that the flow of wastewater engages the cathode and anode electrodes. A voltage is applied across the cathode electrode and the sacrificial anode electrodes to create a current having a density ranging from approximately 5-7 ma/sq. cm so as to release ions from the anode electrodes which oxidize and render insoluble contaminants in the flow of wastewater and create insoluble contaminants and substantially cleansed water. The insoluble contaminants are separated from the substantially cleansed water. An apparatus for use with the method is provided.
Abstract:
Disclosed is a new fluid ionizer for use within a dielectric conduit through which a fluid containing particulate impurities is flowing. The ionizer causes the impurities to cluster together to form larger particles which may be more easily filtered by subsequent processes. The fluid ionizer comprises a hollow electrically grounded first electrode disposed within the conduit and through which fluid flowing in the conduit also flows. A second electrode, coaxially positioned within the first electrode, has a plurality of pointed prongs projecting laterally therefrom to define an ionizing comb. The fluid flows amongst the prongs of the ionizing comb. The second electrode is negatively charged with a high frequency series of high voltage pulses whereby the second electrode, and more particularly the points of the ionizing comb, imparts a negative charge to some of the particles. The negatively charged particles attract the remaining naturally positively charged particles to form clusters of particles.
Abstract:
This invention provides a novel electrode which is capable of operation at sufficiently positive anodic potential to produce hydroxyl free radicals and release them into solution, and a process for producing these electrodes. It also provides electrochemical cells utilizing these electrodes, and a novel material included in these electrodes. The electrode consists of titanium metal or a titanium alloy, with an oxide coating that includes titanium dioxide and also includes niobium(IV) oxide or tantalum(IV) oxide, sufficient to impart adequate electrical conductivity to the titanium dioxide under the necessary anodic polarization. An electrode preparation process is described, which allows niobium or tantalum in the oxide coating to be reduced to the +4 valence state, and causes the coating to assume a very stable and insoluble crystal structure. A process for manufacturing ammonium niobate, which is the preferred source compound for niobium in the electrode manufacturing process, is also provided.
Abstract:
An electrolytic filter system (16) is disclosed for use in treating fluid provided by a fluid source(12) to a supplied environment (14). The system includes an electrolytic cell(18) controlled by control circuit(20). Various alternative constructions of the cell are described in which the effective separation of active electrodes, as well as the effective area of the active electrodes can be altered by a switching circuit (94) and controller (96) included in the control circuit (20). The controller responds to inputs from a current sensor (92) reflecting variations in the resistivity of the water. As a result, the controller is able to alter the effective separation and area of the active electrode, in response to resistivity variations to provide optimal operation.
Abstract:
Attaching apparatus which has a cell of electrodes (30) with an aperture (32) in the center, housed in an enclosure (34) containing a matching bore (36). A nipple (46) with a flange (50) on one end and a series of adjacent notches (48) is screwed into a pool adapter (58) retaining the enclosure tightly against the wall of the pool. Edge spacers (44) fill the gap where pools are contoured.
Abstract:
An electrolytic filter system (16) is disclosed for use in treating fluid provided by a fluid source (12) to a supplied environment (14). The system includes an electrolytic cell (18), whose operation is governed by a control circuit (20) to allow a desired average current to be applied to the cell substantially independent of variations in fluid resistivity, to allow the cell to simultaneously achieve, for example, the desired removal of contaminants, killing of biological materials, and alteration of the fluid's chemical characteristics, and to provide relatively high levels of energy to the fluid quickly and efficiently.
Abstract:
An electrolytic cell for generating a mixed oxidant that is rich in ozone is disclosed. The cell disassociates a brine solution to generate ozone and chlorine based oxidants. The improved cell design allows the ratio of ozone to the other oxidants to be optimized, thereby providing a more efficient sterilization solution. The ozone production is adjusted by adjusting the residence time of the brine solution in the cell and the orientation of the cell.