Abstract:
A process for converting lignocellulosic materials which are field residues such as cotton stalks and corn stover, process residues such as sugarcane bagasse and sweet sorghum bagasse, woody parts of energy crops such as switchgrass and miscanthus, forest residues or byproducts of the wood processing industries such as sawdust from sawmills to a liquid biofuel by a series of processing steps wherein the feed materials are hydrolysed in three stages and withdrawn as three product streams each consisting of solubilized fragments of one of the three major components of the feed materials and a set of concurrently operating processing steps wherein each of the three product streams is transformed through chemical or biochemical processes into products, such as pure lignin and ethanol, that have a high calorific value and process wherein these products with high calorific value are combined to form a liquid biofuel.
Abstract:
Generation of a liquid fuel product in an integrated multiple zone plant is discussed. Syngas components are supplied to a methanol (CH3OH) synthesis reactor from outputs of a first zone containing a torrefaction unit and a second zone containing a biomass gasifier that are combined in parallel and that thermally decompose biomass at different operating temperatures. Char particles of the biomass generated in the first zone are fed to the biomass gasifier in the second zone. Gasoline is produced via a methanol to gasoline process in a third zone, which receives its methanol derived from the syngas components fed to the methanol synthesis reactor. The gasoline derived from biomass is blended with condensable volatile materials including C5+ hydrocarbons collected during the pyrolyzation of the biomass in the torrefaction unit in the first zone in order to increase an octane rating of the blended gasoline.
Abstract:
Biomass pyrolysis oil is converted into precursors for hydrocarbon transportation fuels by contacting the oil with liquid superheated water or supercritical water to depolymerize and deoxygenate the components of the oil and form the transportation fuel precursors. Temperatures above 200° C. and preferably above 300° C. are preferred with supercritical water at temperatures above 374° C. and pressures above 22 MPA providing the capability for fast conversion rates.
Abstract:
The present invention is a process and apparatus for forming various bio-products from cellulosic plant material. The plant material is subjected to a pulping step in which lignin is extracted from the material by an aqueous lignin solvent to form a lignin-solvent mixture and purified cellulose. The lignin-solvent mixture can be separated from the water to form a high energy density fuel that can be used independently or combined with biodiesel. The purified cellulose can be used in conventional processes, e.g., paper making, or can be converted to fermentable sugars with a cellulase enzyme to produce other bio-products depending on the operating conditions of the fermenter. The bio-products produced by the fermenter can include the solvent that may be recycled for use in extracting the lignin.
Abstract:
A reactive distillation process is disclosed for converting aquatic biomass to a bio-oil. In the process a slurry of aquatic biomass is contacted with a particulate inorganic material. The mixture is heated to or above its boiling point. During the heating step biomass is converted to bio-oil. In a preferred embodiment water vapors emanating from the slurry are collected and condensed. The fresh water obtained may be used for irrigation, in human domestic uses, and for human consumption.
Abstract:
A method of production of value-added, biobased chemicals, derivative products, and/or purified glycerin from animal-based bioglycerin is described herein. A method of purification of animal-based bioglycerin is also described herein. The method of purification of animal-based bioglycerin described provides methods for desalinating, decolorizing, and/or concentrating animal-based bioglycerin for the production of biobased chemicals, derivative products, and/or purified glycerin.
Abstract:
Provided is a raw petroleum coke composition as a raw material of an anode carbon material that can improve, when a battery is discharged at a high current, the ratio capable of maintaining the capacity obtained during discharge at a low current. More specifically, provided is a raw petroleum coke composition for an anode carbon material of a lithium ion secondary battery, the raw petroleum coke composition being produced by subjecting a heavy-oil composition to a delayed coking process, and comprising an atomic ratio of hydrogen atoms H to carbon atoms C(H/C atomic ratio) of 0.30 to 0.50, and a micro-strength of 7 to 17% by weight. Further provided are a method for producing an anode carbon material of a lithium ion secondary battery, comprising the steps of: pulverizing the raw petroleum coke composition into particles having an average particle diameter of 5 to 30 μm, and subjecting the particles to carbonization and/or graphitization; and a lithium ion secondary battery comprising an anode comprising such a carbon material.
Abstract:
The invention is a bioenergy and/or waste-to-energy process. The invention is a process using controlled pyrolysis reactions to convert biomass and carbon based waste material into carbon byproducts, biofuels and useable energy in the form of heat and/or electricity. The process includes one or more pyrolysis reaction chambers and a thermal oxidizer. Hot, oxygen-free exhaust gases from the thermal oxidizer are modulated through the pyrolysis reaction chambers to sustain the pyrolysis reaction. The exhaust gases along with the pyrolysis gases are drawn from the pyrolysis reaction chambers and routed to the thermal oxidizer. Combustion air is modulated into the thermal oxidizer through one or more ports to control combustion of the pyrolysis gases. After combustion, exhaust gases are recirculated to the pyrolysis reaction chambers to sustain the cycle.The invention proposes a process which is unique in four ways. Firstly, the process may convert any carboneous material, such as biocrops, animal waste, used tires, into bioproducts and biofuels.Secondly, the carbonization process is accomplished with no oxygen or combustion in the carbonization chambers.Thirdly, the modular arrangement of the process components allows easy adaptability to diverse process requirements.Fourthly, the mobility of the process material containers allows easy loading, transport, and unloading of the process material; and greatly reduces material handling requirements.
Abstract:
A crude product composition is provided. The crude product composition contains from 0.001 wt. % to 5 wt. % residue. The crude product composition contains hydrocarbons having a boiling point in the ranges of at most 204° C., from 204° C. to 300° C., from 300° C. to 400° C., and from 400° C. to 538° C. The hydrocarbons boiling in a range of at most 204° C. comprise paraffins, where the paraffins comprise iso-paraffins and n-paraffins, and the weight ratio of iso-paraffins to n-paraffins is at most 1.4.
Abstract:
The present invention relates to a method for producing a plant growth medium comprising the following steps: a) providing an amount of bioorganic matter; b) contacting the bioorganic matter with one or more microbial agents capable of degrading the bioorganic matter to produce a decomposition product; and c) treating the decomposition product produced in step (b) to inhibit the degradation process prior to its completion. The invention further provides a bioreactor and a kit for performing that method, and a plant growth medium. In an embodiment, the plant growth medium is a peat-substitute material.