Abstract:
A planarization method of manufacturing a semiconductor component is provided. A dielectric layer is formed above a substrate and defines a trench therein. A barrier layer and a metal layer are formed in sequence in the trench. A first planarization process is applied to the metal layer by using a first reactant so that a portion of the metal layer is removed. An etching rate of the first reactant to the metal layer is greater than that of the first reactant to the barrier layer. A second planarization process is applied to the barrier layer and the metal layer by using a second reactant so that a portion of the barrier layer and the metal layer are removed to expose the dielectric layer. An etching rate of the second reactant to the barrier layer is greater than that of the second reactant to the metal layer.
Abstract:
Disclosed is an ink composition used in an electrowetting display device and an electrowetting display device employing the same. The ink composition used in the electrowetting display device includes a non-polar solvent and a modified hydrophobic pigment, wherein the modified hydrophobic pigment has a structure represented by Formula (I), of P-Gn wherein P is a pigment moiety, n is 1-4 and G is wherein R1 is a straight chain or a branched C4-20 alkyl group, or C5-20 cycloalkyl group.
Abstract:
A transformer includes a bobbin. The bobbin includes a base and a main body. The main body is disposed on the base. The main body has a channel passing through the main body. The channel has two openings. Each of the openings has a first center. The main body includes a first main body portion and a second main body portion respectively at two sides of a first plane that is parallel to the base and passes through the first centers. The second main body portion is connected between the first main body portion and the base. The first main body portion and the second main body portion are asymmetric and have different heights relative to the first plane.
Abstract:
The present invention relates to a gas combustor, which includes a casing unit of the gas combustor and a detachable ignition module, the detachable ignition module is to have an igniter being modularized as a single unit, thereby being enabled to be inserted in or removed from an insertion slot preformed on a surface of the casing unit of the gas combustor, and a cathode connecting joint and a anode connecting joint of the detachable ignition module are respectively in contact with or separated from an electric conductive wire installed in the insertion slot, thereby establishing or terminating an electric connection, so the inconvenience and possible danger of replacing the igniter by the user himself is avoided.
Abstract:
A method for manufacturing a stereoscopic display module including following steps is provided. A display module is provided. A first retardation film is attached on the display module with a heat-resisting adhesive layer. After attaching the first retardation film on the display module with the heat-resisting adhesive layer, a partial region of the first retardation film is heated to vanish a phase retardation property. The partial region includes a plurality of sub-regions spaced at intervals. A stereoscopic display module and a manufacturing system thereof are also provided.
Abstract:
A multi-beam laser device is used to make a microretarder plate, which comprises a plurality of first retardation state areas and second retardation state areas alternating with each other. The device comprises an infrared laser, a beam splitter, and a driving means. The beam splitter is used to split the laser beam into a plurality of equal intensity parallel beams and bring the parallel beams into focus. The driving mechanism is used to drive the beam splitter in one direction, and the beam splitter will scan a plurality of parallel scan lines by the direction on a surface.
Abstract:
A black ink composition is provided. The black ink composition includes a dispersive black colorant; less than 1 wt % of a glycol ether compound based on total weight of the black ink composition; a solvent; and water. The black ink composition of the present invention is free of surfactants and has excellent compatibility with a nozzle, and thus provides good smoothness in printing and high-quality image.
Abstract:
The present disclosure involves a method of performing a maskless lithography process. The method includes receiving a computer layout file for an integrated circuit (IC) device. The layout file contains a plurality of IC sections. The method includes separating the computer layout file into a plurality of sub-files. The method includes striping the plurality of sub-files concurrently using a plurality of computer processors, thereby generating a plurality of striped sub-files. The method includes transferring the plurality of striped sub-files to a maskless lithography system.
Abstract:
A described method includes providing a semiconductor substrate. A first gate structure is formed on the semiconductor substrate and a sacrificial gate structure formed adjacent the first gate structure. The sacrificial gate structure may be used to form a metal gate structure using a replacement gate methodology. A dielectric layer is formed overlying the first gate structure and the sacrificial gate structure. The dielectric layer has a first thickness above a top surface of the first gate structure and a second thickness, less than the first thickness, above a top surface of the sacrificial gate structure. (See, e.g., FIGS. 5, 15, 26). Thus, a subsequent planarization process of the dielectric layer may not contact the first gate structure.
Abstract:
A conductive winding module is used in a magnetic element. The conductive winding module includes multiple conductive units and multiple output terminals. The conductive units have respective hollow portions. The output terminals are arranged on the conductive units. The conductive units are folded with respect to a connecting line between the conductive units such that the hollow portions are aligned with each other to define a through-hole and the multiple output terminals are staggered to form at least three output terminals to be inserted into a circuit board.