Abstract:
There is provided a cryogenic tank having a dual construction for storing ultralow temperature liquid with improvement which allows simplicity in its construction and readiness of setup and allows reduction in the setup, yet achieves high reliability. For accomplishing the above-noted object, in a cryogenic tank having a dual construction with an inner tank for storing low-temperature liquefaction fluid therein and an outer tank enclosing the bottom and the shell of the inner tank. The inner tank includes a bottomed inner vessel formed of concrete and an inner cold resistant relief covering the inner face of the inner vessel. The outer tank includes a bottomed outer vessel formed of concrete and an outer cold resistant relief covering the inner face of the outer vessel.
Abstract:
A system for the controlled storage and dispensing of a hazardous material at super-atmospheric pressure comprises a pressurized source vessel and the integrated valve regulator assembly of the present invention. The system comprises a pressurized source vessel and the integrated valve regulator assembly that includes a super-atmospheric pressure regulator.
Abstract:
The present invention provides for an integrated valve regulator assembly that comprises an integral body having a base portion that includes an axis for mounting on and coaxially with the neck portion of a pressurized source vessel and an assembly outlet, a defined internal passage in the integral body that extends through and between the base portion of the integral body and the assembly outlet, a sub-atmospheric pressure regulator assembled within the integral body of the integrated valve regulator assembly, an isolation valve positioned within the defined internal passage of the integral body and located downstream from and in communication with the sub-atmospheric pressure regulator, and a filling port disposed between the axis for mounting on and coaxially with the neck portion of the pressurized source vessel and the sub-atmospheric pressure regulator. The present invention further provides for a system for the controlled storage and dispensing of a hazardous material at sub-atmospheric pressure that comprises a pressurized source vessel and the integrated valve regulator assembly of the present invention. The present invention further provides for an additional integrated valve regulator assembly as described with the exception that the pressure regulator utilized is for super-atmospheric pressure conditions and also a system that comprises a pressurized source vessel and the integrated valve regulator assembly that includes a super-atmospheric pressure regulator.
Abstract:
Gas container and method for filling a container with gas. The method includes inserting an electrically conducting stretched material into the container before inserting gas into the container, electrically connecting to an electrical ground and at least one of the electrically conducting stretched material and an area in a vicinity of an outlet opening of a filling pipe for inserting the gas into the container, and inserting gas into the container under compression.
Abstract:
A Dewar system is configured to liquefy a flow of fluid, and to store the liquefied fluid. The Dewar system is disposed within a single, portable housing. Disposing the components of the Dewar system within the single housing enables liquefied fluid to be transferred between a heat exchange assembly configured to liquefy fluid and a storage assembly configured to store liquefied fluid in an enhanced manner. In one embodiment, the flow of fluid liquefied and stored by the Dewar system is oxygen (e.g., purified oxygen), nitrogen, and/or some other fluid.
Abstract:
A valve body (1) which may be applied to a pressure vessel (B), in particular a vessel (B) adapted to contain a liquefied gas, comprises: a first duct (7) which may be used to fill and empty the vessel (B), a second duct (27) connecting the vessel (B) to a safety valve device (15) provided on the valve body (1), a third duct (37) connecting the vessel (B) to a level indicator (28) provided on the valve body (1).
Abstract:
The invention relates to a high-pressure container comprising a thin-walled, cylindrical metal liner (1) having bases (8) on the end sections and an outer stable jacket (2) that surrounds the liner (1). At least one of the bases (8) of the liner (1) has a slight convex curvature towards the interior of the liner (1). A pressure converter (4) is situated between the outer surface of the convex base (8) and the inner surface of a base part of the stable jacket (2), said converter being constructed from a rigid profiled base on the side facing the base part of the rigid jacket (2) and a deformable cushion (6) of viscoelastic material on the side facing the convex base (8).
Abstract:
The oxygen tank accessory apparatus provides a basket with accompanying hand-operated clamps for affixing the apparatus to an existing supported oxygen tank, such as those attached to vehicles like wheelchairs. The components of the apparatus are made of appropriate materials that meet medical standards and medical environment standards. Both the clamps and the basket are designed to be lightweight. The clamp's opposing convex clamp members, for example, have central cutouts to further save weight. The clamp members are interiorly lined with a frictional material for best tank retention until removal is desirable. The levers with curved extensions provide for a user to easily lever the clamp members away from an oxygen tank so that the apparatus can be easily applied and removed without tools or inordinate physical effort.
Abstract:
A lightweight high pressure repairable piston composite tie-rod accumulator that does not use a load bearing metallic liner. An exemplary accumulator includes composite tie rods that sustain the axial stress induced by pressurization of the accumulator, while the shell is designed such that it sustains the stress of pressurization in the hoop direction. The tie rods can be secured using a wedge-type tie rod retention mechanism. As a result, no pretension is applied to the tie rods and the composite shell may be designed entirely for hoop stress.
Abstract:
A pressure control valve assembly for containers adapted to contain compressed and liquefied gases, comprising a valve body that can be applied to a container for gases and the like, in which a first duct for the gas in output from said container and a pressure regulator device connected to the inside of said container and to said first duct are defined, said pressure regulator device being fully placeable within said container, said regulator device comprising at least one regulator of the piston type.