Abstract:
A METHOD OF PURIFYING WATER WHICH COMPRISES INTRODUCING BACTERIACIDAL CHLORINE DIRECTLY INTO, OR JUST PRIOR TO PURIFICATION MEDIA FOR SAID WATER AT CONCENTRATIONS SUBSTANTIALLY ABOVE POTABLE LIMITS SO THAT ESSENTIALLY ALL OF THE CHLORINE IS AVAILABLE FOR REACTION TO KILL MICROORGANISMS TRAPPED IN SAID PURIFICATION MATERIAL.
Abstract:
A method and device for removing chloride ions in desulfurized wastewater by electrochemical coupling in which the device comprises: an electrolyte tank having a top and a bottom wherein the tank is used as a separator in a separation process and as an electrode regenerator in an electrode regeneration process; two electrodes comprising a hydrogen evolution electrocatalysis function electrode and an electrochemically switched ion exchange (ESIX) function electrode respectively, wherein the electrodes are connected with each other by a wire; two DC circuits having opposite electric field directions and used alternately in the separation process and the electrode regeneration process respectively; the bottom of the electrolyte tank is provided with a purified high-concentration chloride ion wastewater inlet and a flocculation product outlet; the top of the tank is provided with a dechlorination treatment water outlet and a hydrogen collecting port; and, in the electrode regeneration process, the electrolyte tank is connected to an electrode regeneration liquid storage tank through a pump and a pipeline.
Abstract:
A liquid treatment device that can improve liquid treatment performance by taking advantage of the Fenton's reaction while efficiently generating plasma for liquid treatment, in addition to enabling stable plasma generation for extended time periods includes a first electrode that is rod-like in shape; a second electrode that is plate-like in shape and is configured from a metal containing copper or iron; and a treatment vessel in which introduced liquid swirls, and generates a gas phase in a swirl flow of the liquid. A plasma is generated by applying a pulse voltage to the generated gas phase, and a negative DC voltage is applied between the first electrode and the second electrode serving as a cathode and an anode, respectively. Under the applied negative voltage, the plate-like second electrode generates copper ions or iron ions, and the copper or iron ions undergo Fenton's reaction with the hydrogen peroxide generated by the plasma so that liquid can be efficiently treated.
Abstract:
Feedwater and saltwater used in desalination plants, oil field installations, and large data centers can be treated to reduce scale, biological contaminants, and biologically induced corrosion therein by the integration of different treatment mechanisms.
Abstract:
An upright reactor body with a perforated interior tube member which extends for the length of the reactor body. A water inlet permits water to be treated into the perforated tube member. A fibrous metal anode surrounds the perforated tube member followed by a surrounding layer of dielectric and then a surrounding metal cathode layer, wherein water from the inlet passes radially through the perforations in the tube member, through the anode, dielectric and cathode members, emerging from the reactor body through an outlet. A DC voltage is imposed on the cathode and anode.
Abstract:
Various embodiments provide methods for removing a PFC by concentration and separation. In an exemplary method, a PFC in an aqueous solution or in a mixed water-organic solvent solution can be adsorbed onto a surface of a floc generated by electroflocculation, to form sludge. The sludge containing the PFC can be centrifuged to separate the PFC from the sludge and to form a concentrated PFC solution. Eelectroflocculation provides a simple process that is easy to operate. Reaction conditions are mild. Energy consumption is low. Treatment effect is desirable, stable, and reliable. Industrial application can be easy to implement. Further, the centrifugal separation technology used for the harmless treatment of the generated PFC-containing sludge is novel and does not need to use chemicals. Further, dewatering of the sludge is achieved at the same time during the harmless treatment. The needed equipment is simple and can be automatically operated.
Abstract:
For bio-electrically generating electric power from organic ingredients of a waste water flowing in a flow direction, an anode is immersed in the waste water in a first spatial area, and oxygen is supplied to a cathode which is electrically connected to the anode and arranged in a second spatial area delimited from the first spatial area by means of a proton-permeable membrane. A voltage between the anode and the cathode is increased by a DC/DC converter located at the anode and the cathode, and a further voltage between a further anode in said or a further first spatial area and a further cathode in said or a further second spatial area is increased by a further DC/DC converter located at the further anode and the further cathode. A DC voltage link is charged with the DC/DC converter and the further DC/DC converter connected in parallel to the DC voltage link.
Abstract:
Contaminants are removed from untreated raw water or discharge water by applying direct current through an array of spaced, alternately charged electrodes positioned within and electrically isolated from a housing to eliminate or minimize clogging of the electrodes with precipitated contaminants. The housing is surrounded with container structure that cooperates with the housing to define an inlet chamber positioned between the source of untreated water and the housing containing the spaced array of electrodes. The container structure further includes an outlet chamber defined between the housing and the container structure for accumulating and draining water treated by the spaced electrode array.