Abstract:
A clutch control system for moving an object, such as a vehicle door, lift gate or trunk, compares the motor speed with the object speed and engages the clutch when the motor and object speeds are almost equal. Controlling engagement based on the object and motor speeds ensures smooth transitions into a power assist mode and between the power assist mode and a power release mode without causing clutch shock.
Abstract:
A device for automatically controlling a slide door for a vehicle, wherein the slide door is adapted to open and close along a guide track installed in a vehicle body, the device having a door drive device, a motor load detection device, a door position detection device adapted to detect a position of the slide door guided by the guide track within a range from a position where the slide door is fully opened to a position where the slide door is fully closed, a door speed detection device, a memory device adapted to store the motor load at each position of the slide door of the vehicle standing at a horizontal level, and a motor control device adapted to automatically control power supplied to the motor for moving the slide door based on a difference between a detected motor load and a stored motor load at a corresponding position
Abstract:
A rack includes a closed position teeth portion meshed with a teeth portion of an output gear when the rack is disposed at a closed position corresponding to a closed position of an opening and closing member and an opened position teeth portion meshed with the teeth portion of the output gear when the rack is disposed at an opened position corresponding to an opened position of the opening and closing member and a clearance between faces of teeth of the closed position teeth portion and the teeth portion of the output gear is made larger than a clearance between faces of teeth of the opened position teeth portion and the teeth portion of the output gear.
Abstract:
The present invention provides an automatic door control system that includes a door, a control module assembly, and a drive train assembly. The control module assembly is coupled to the door. The drive train assembly is coupled to the control module assembly, where the drive train assembly is configured to receive a signal from the control module assembly to easily move the door, where the drive train assembly exerts a force to move the door.
Abstract:
The door-opening/closing apparatus includes a door, a driving unit that drives the door to close the door, a door movement detection unit that detects a movement of the door, an electrostatic switch that is mounted on the door for detecting a human's touching the door, and a judgment unit that judges whether the door is attempted to be closed. When the door movement detection unit detects a movement of the door, and when the electrostatic switch senses a human's touching the door, the judgment unit judges that the door is attempted to be closed, and then the driving unit drives to close the door.
Abstract:
A lock latch mechanism disposed within a powered locking device of a transit vehicle door system for maintaining a lock lever in an unlock position without the aid of the lock actuator. The lock latch mechanism includes a lock latch lever biased for engagement with an unlock cam through the use of a bias spring. The lock latch mechanism further includes a reset lever assembly engaging such lock latch lever during the door closing motion to allow movement of the lock lever form such unlocking position into such locking position to maintain at least one door of the transit vehicle in the fully closed and lock position. A manual release lever is provided to move the lock lever from such locking position into such unlocking position enabling the lock latch mechanism to maintain the lock lever in such unlocked position.
Abstract:
A drive system for a hinged gate of a vehicle, which includes: a motor unit, a rack and pinion mechanism, a link member connected to a point of the hinged gate, and a shaft member fixed to the rack, to which the link member is rotatably connected. The motor unit includes a motor, gears, and a casing accomodating the gears. The rack and pinion mechanism includes a pinion driven by the motor unit and the rack movably supported on the casing of the motor unit. The casing has a guide casing, which extends in a longitudinal direction of the rack. The guide casing is formed to have a closed section surrounding the shaft member and is provided therein with a guide member configured for guiding the rack.
Abstract:
A rear gate is constructed to be opened and closed by a driving unit installed on a vehicle body side, and the driving unit is constructed to have a motor which can rotate both in normal and reverse directions, a gearbox to which a pinion is pivotally attached for reducing the rotating speed of the motor for output, and a rack adapted to reciprocate in directions normal to an axial direction of a hinge shaft by virtue of the rotation of the pinion and connected to the rear gate at one end thereof. An electromagnetic clutch for connecting and disconnecting a power transmission path between an output shaft of the motor and the pinion is provided in the interior of the gearbox, so that the rack is disposed above or below the gearbox at a position directly above or below the clutch.
Abstract:
An automatic opening/closing device of a vehicular opening/closing body, which gradually increases a duty until a rotary pulse cycle is definitely decided at a stage before a jamming determining time comes, thus making it possible to move a backdoor even if a resistance due to self-weight of the backdoor is generated and to prevent a malfunction in which the backdoor is halted or an operation thereof is inverted even under a state where the backdoor does not jam any foreign object.
Abstract:
The present system includes various mechanisms and devices which may be used to automatically open and close a window. In cooperation with the various mechanisms, a remote controller may be operated to accuate the mechanisms and devices without manual manipulation. In addition to the window mechanism being automatically operated, the system may also operate to lock the window structure to prevent unnecessary stress and overload to the motor, or to prevent unauthorized access and entry through the window.