Abstract:
In an up-converter path of a transmitter, wide-band signal system like direct. conversion WiGig, a high pass filter (HPF) is placed in the baseband path after the low pass filter (LPF) but before the mixers. The baseband signal of WiGig can have a bandwidth of 800 MHz. The HPF removes the frequencies from 0-40 MHz from the baseband signal and degrades the overall signal of the baseband by a dB or so. However, the frequency pulling is significantly reduced since oscillator frequency and Radio frequency (RF) transmitter frequencies after conversion become further separated when compared a system using to the conventional approach. This causes the injected signal to fall outside the locking range of the oscillator. The concern of substrate coupling is reduced and allows for a reduction in the physical distance between the oscillator and the mixer and reduces a shift in the desired target frequency of operation.
Abstract:
A cross coupled NMOS transistors providing a negative gm transistor feedback allows a mixer to saturate at a reduced input signal swing voltage when compared to a conventional mixer allowing the mixer to enter into the current mode operation at a reduced signal input voltage range. The linearity of the baseband signal path can be traded against the mixer gain and is improved if the signal swing in the baseband signal path is reduced. The input mixer transistors operate in the saturated mode at a reduced input signal swing voltage causing the power efficiency of the system to increase since the transmit chain operates at a class-D power efficient. Efficiency is very important in mobile applications to save and extend the battery power of a mobile phone providing a better utilization of the available power since most of that power is supplied to the energy of the outgoing modulated signal.
Abstract:
The class-E amplifier can be tuned to pass only the fundamental frequency to the antenna by optimizing the second harmonics at the drain of the final PA driver transistor. A CPW in series with a capacitor between the PA transistor and the load forms a band pass filter that only allows the fundamental frequency to pass to the load of the antenna. A supply inductor to couple the drain of the final PA driver transistor to the power supply is tuned at the second harmonic with the parasitic capacitance of the drain of the PA transistor. A load capacitance is adjusted at the fundamental frequency to insure that the current waveform and voltage waveforms at the drain of the PA driver transistor do not overlap, thereby minimizing the parasitic power dissipation and allowing maximum energy to be applied to the antenna.
Abstract:
The LTCC (Low Temperature Co-fired Ceramic) substrate is used to form an antenna structure operating at 60 GHz. The dielectric constant is high and ranges from 5 to 8. The substrate thickness is fabricated with a thickness between 360 μm to 700 μm. The large dielectric constant and large thickness of the substrate creates a guiding wave in the LTCC that forms an endfire antenna. A high gain signal of 10 dB in a preferred direction occurs by placing the microstrip fed dipole structure in the center of the LTCC substrate creating a dielectric cavity resonator. The creation of a slot in the LTCC substrate between the two microstrip fed dipole structures eliminates beam tilting and allows for the two microstrip fed dipole structures to reduce the coupling to each other thereby providing substantially two isolated endfire antennas. These antennas can be used as multiple receive or transmit antennas.
Abstract:
A differential amplifier comprising a first upper device and a first lower device series coupled between two power supplies and a second upper device and a second lower device series coupled between the two power supplies. A first DC voltage enables the first upper device and the second upper device and a second DC voltage regulates current flow in the first lower device and the second lower device. An AC signal component is coupled to the first upper device and the second lower device while the AC signal complement is coupled to the first lower device and the second upper device. A first output signal between the first upper device and the first lower device. Separate RC networks couple the AC signals to their respective device. A first and second output signal forms between the upper device and the lower device, respectively. All the devices are same channel type.
Abstract:
A cascode common source and common gate LNAs operating at 60 GHz are introduced and described. The cascode common source LNA is simulated to arrive at an optimum ratio of upper device width to the lower device width. The voltage output of the cascode common source LNA is translated into a current to feed and apply energy to the mixer stage. These input current signals apply the energy associated with the current directly into the switched capacitors in the mixer to minimize the overall power dissipation of the system. The LNA is capacitively coupled to the mixer switches in the I and Q mixers and are enabled and disabled by the clocks generated by the quadrature oscillator. These signals are then amplified by a differential amplifier to generate the sum and difference frequency spectra.
Abstract:
Injection locked dividers provide a divided clock signal after being driven by a injected clock signal that is a multiple of the divided clock signal. At injected clock signal at 60 GHz generates a differential 30 GHz clock signal. One innovative construction of the injection locked oscillator reduces the internal capacitive at a node by associating the parasitic capacitance at this node with the inductors of the tapped inductor resonant circuit. This provides more energy flow in the injection pulses applied to the legs of the injection locked circuit providing an increase locking range.
Abstract:
A circuit comprises a Sallen-Key filter, which includes a source follower that implements a unity-gain amplifier; and a programmable-gain amplifier coupled to the Sallen-Key filter. The circuit enables programmable gain via adjustment to a current mirror copying ratio in the programmable-gain amplifier, which decouples the bandwidth of the circuit from its gain settings. The programmable-gain amplifier can comprise a differential voltage-to-current converter, a current mirror pair, and programmable output gain stages. The Sallen-Key filter and at least one branch in the programmable-gain amplifier can comprise transistors arranged in identical circuit configurations.
Abstract:
A circuit comprises a Sallen-Key filter, which includes a source follower that implements a unity-gain amplifier; and a programmable-gain amplifier coupled to the Sallen-Key filter. The circuit enables programmable gain via adjustment to a current mirror copying ratio in the programmable-gain amplifier, which decouples the bandwidth of the circuit from its gain settings. The programmable-gain amplifier can comprise a differential voltage-to-current converter, a current mirror pair, and programmable output gain stages. The Sallen-Key filter and at least one branch in the programmable-gain amplifier can comprise transistors arranged in identical circuit configurations.
Abstract:
A cascode amplifier circuit comprises a first spiral inductor coupled to a source of a first transistor; a second spiral inductor coupled to a drain of a second transistor; a third inductor connecting the first transistor to the second transistor; a first capacitor coupled in parallel to the third inductor forming a bandpass filter; and a second capacitor coupled in parallel to the second spiral inductor forming a resonant circuit, wherein the resonant circuit oscillates at a center frequency.