Abstract:
The methods and compositions of the present invention are directed to coloration of anagenic hair. The methods involve priming and deep cleaning the anagenic hair followed by coating the hair strands with a composite pigment containing film of a small molecule and a film forming composition which covalently interact to form an intimate three dimensional silicone network incorporating the pigment on the surfaces of the hair.
Abstract:
Superabsorbent material, comprising first superabsorbent polymers, coated with second clay-crosslinked superabsorbent polymers, said second clay-crosslinked superabsorbent polymers being obtainable by the step of polymerization of a solution/dispersion of polymerizable compounds and clay particles, to obtain said second superabsorbent polymers, crosslinked by said clay particles, of a weight average largest particle dimension of less than 800 nm.
Abstract:
Absorbent structures comprising vacuum-treated (optionally coated) post-crosslinked water-absorbing polymeric particles, obtainable by vacuum-treating and optionally plasma-treating post-crosslinked water-absorbent polymeric particles (that may optionally be coated), the resulting vacuum-treated post-crosslinked water-absorbing polymeric particles having an improved absorption, whilst having good gel bed permeability.
Abstract:
A description is given of an aqueous polymer dispersion comprising at least one polyurethane, dispersed in aqueous phase and having one or more uretdione groups, and at least one solid polyamine with a deactivated surface, said dispersion being useful as an adhesive, coating material or sealant or for producing adhesive, coating or sealing compositions. The compositions can be activated thermally or by electromagnetic radiation.
Abstract:
The present invention relates to an absorbent structure suitable in, or being an adult or infant diaper or feminine hygiene article, comprising a water-absorbing material comprising water-absorbing particles that comprise a film coating, comprising an elastic film-forming polymer and a coalescing agent.The invention also relates to an absorbent structure comprising a water absorbent material obtainable by a process of: a) spray-coating water-absorbing polymeric particles with an elastic film-forming polymer in a fluidized bed reactor at a temperature in the range from 0° C. to 150° C. and b) heat-treatment of the coated polymeric particles at a temperature above 50° C., wherein in step a) and/or b) a coalescing agent is added.
Abstract:
The use of polyelectrolyte complexes as plasticizer barrier is described, in particular those formed from anionic polymer and from cationic polymer, as also are plasticized substrates and production of the same, where the plasticized substrates have been coated with at least one layer which comprises at least one polyelectrolyte complex.
Abstract:
Processes for making water-absorbent cross-linked polymers, such as polyacrylic acids/polyacrylates, using supercritical medium; and water-absorbent polymers, e.g. particles thereof, obtained by such processes, where such particles may be porous.
Abstract:
The use of an aqueous polyurethane dispersion adhesive is described for producing biodisintegratable composite foils where at least two substrates are adhesive-bonded to one another with use of the polyurethane dispersion adhesive, where at least one of the substrates is a biodisintegrable polymer foil. At least 60% by weight of the polyurethane is composed of diisocyanates, polyesterdiols, and at least one bifunctional carboxylic acid selected from dihydroxycarboxylic acids and diaminocarboxylic acids.
Abstract:
Method for determining the intrinsic gel strength of a water-absorbing hydrogel-forming polymeric material, comprising the step of: obtaining a hydrogel of said water-absorbing polymeric material, submitting said hydrogel to a controlled strain application step and measuring the stress; or submitting said hydrogel to a controlled stress application step and measuring the strain, and determining from said measured stress or strain of step c) the modulus of said hydrogel.