Abstract:
In a method of manufacturing an MRAM device, a lower electrode and a preliminary first free layer pattern sequentially stacked are formed on a substrate. An upper portion of the preliminary first free layer pattern is removed to form a first free layer pattern. A second free layer and a tunnel barrier layer are sequentially formed on the first free layer pattern. The second free layer is partially oxidized to form a second free layer pattern. A fixed layer structure is formed on the tunnel barrier layer.
Abstract:
Provided is a method and an apparatus for processing data at a high speed by a UE for data communication. In the method, received data is divided into a header and payload information, which are then stored in different memories. In the method, header processing and payload data processing can be performed in parallel, and two memory devices can perform parallel processing without sharing a bus.
Abstract:
In one aspect, a method of forming a phase change material layer is provided. The method includes supplying a reaction gas including the composition of Formula 1 into a reaction chamber, supplying a first source which includes Ge(II) into the reaction chamber, and supplying a second source into the reaction chamber. Formula 1 is NR1R2R3, where R1, R2 and R3 are each independently at least one selected from the group consisting of H, CH3, C2H5, C3H7, C4H9, Si(CH3)3, NH2, NH(CH3), N(CH3)2, NH(C2H5) and N(C2H5)2.
Abstract:
A phase change memory device includes an impurity region on a substrate, the impurity region being in an active region, a metal silicide pattern at least partially buried in the impurity region, a diode on the impurity region, a lower electrode on the diode, a phase change layer pattern on the lower electrode, and an upper electrode on the phase change layer pattern.
Abstract:
Provided are a phase change memory device and a method for forming the phase change memory device. The method includes forming a phase change material layer by providing reactive radicals to a substrate. The reactive radicals may comprise precursors for a phase change material and nitrogen.
Abstract:
A conductive pattern on a substrate is formed. An insulating layer having an opening exposing the conductive pattern is formed. A bottom electrode is formed on the conductive pattern and a first sidewall of the opening. A spacer is formed on the bottom electrode and a second sidewall of the opening. The spacer and the bottom electrode are formed to be lower than a top surface of the insulating layer. A data storage plug is formed on the bottom electrode and the spacer. The data storage plug has a first sidewall aligned with a sidewall of the bottom electrode and a second sidewall aligned with a sidewall of the spacer. A bit line is formed on the data storage plug.
Abstract:
Methods of fabricating integrated circuit memory cells and integrated circuit memory cells are disclosed. Formation of an integrated circuit memory cell include forming a first electrode on a substrate. An insulation layer is formed on the substrate with an opening that exposes at least a portion of a first electrode. An amorphous variable resistivity material is formed on the first electrode and extends away from the first electrode along sidewalls of the opening. A crystalline variable resistivity material is formed in the opening on the amorphous variable resistivity material. A second electrode is formed on the crystalline variable resistivity material.
Abstract:
An apparatus and method for generating and parsing a MAC PDU in a mobile communication system are provided in which LCIDs of MAC SDUs to be multiplexed are checked, the length of an LF is determined for each of the MAC SDUs, referring to LF lengths predetermined for the LCIDs, a MAC header including the LCIDs and LFs of the determined lengths for the MAC SDUs is generated, and a MAC PDU is generated by attaching the MAC header to payload including the MAC SDUs. During the MAC header generation, if a padding size required for the MAC PDU generation calculated taking into account the absence of a last LF in the MAC header is larger than the length of the last LF, the last LF is included in the MAC header, the required padding size is recalculated, taking into account the inclusion of the last LF, and a padding is added according to the re-calculated padding size.
Abstract:
A method includes forming a phase change material layer on a substrate using a deposition process that employs a process gas. The process gas includes a germanium source gas, and the germanium source gas includes at least one of the atomic groups “—N═C═O”, “—N═C═S”, “—N═C═Se”, “—N═C═Te”, “—N═C═Po” and “—C≡N”.
Abstract translation:一种方法包括使用采用处理气体的沉积工艺在衬底上形成相变材料层。 工艺气体包括锗源气体,锗源气体包括至少一个原子团“-N = C = O”,“-N = C = S”,“-N =C≡Se”,“ -N =C≡Te“,”-N =C≡Po“和”-C≡N“。
Abstract:
The method of forming a Te-containing chalcogenide layer includes radicalizing a first source that contains Te to form a radicalized Te source, and forming a Te-containing chalcogenide layer by supplying the radicalized Te source into a reaction chamber. A method fabricating a phase change memory device includes loading a substrate on which a lower electrode is formed into a reaction chamber, radicalizing a first source that contains Te to form a radicalized Te source, forming a phase change material film containing Te on the lower electrode by supplying the radicalized Te source into the reaction chamber, and forming an upper electrode on the phase change material film.