Abstract:
A semiconductor device and system for a hybrid metal fully silicided (FUSI) gate structure is disclosed. The semiconductor system comprises a PMOS gate structure, the PMOS gate structure including a first high-κ dielectric layer, a P-metal layer, a mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-κ dielectric layer, the P-metal layer and a fully silicided layer formed on the P-metal layer. The semiconductor system further comprises an NMOS gate structure, the NMOS gate structure includes a second high-κ dielectric layer, the fully silicided layer, and the mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-κ dielectric and the fully silicided layer.
Abstract:
A system and method for forming a semiconductor device with a reduced source/drain extension parasitic resistance is provided. An embodiment comprises implanting two metals (such as ytterbium and nickel for an NMOS transistor or platinum and nickel for a PMOS transistor) into the source/drain extensions after silicide contacts have been formed. An anneal is then performed to create a second silicide region within the source/drain extension. Optionally, a second anneal could be performed on the second silicide region to force a further reaction. This process could be performed to multiple semiconductor devices on the same substrate.
Abstract:
A method for forming a semiconductor structure includes providing a semiconductor substrate, forming a gate stack on the semiconductor substrate, forming a silicon-containing compound stressor adjacent the gate stack, implanting non-siliciding ions into the silicon-containing compound stressor to amorphize an upper portion of the silicon-containing compound stressor, forming a metal layer on the silicon-containing compound stressor while the upper portion of the SiGe stressor is amorphous, and annealing to react the metal layer with the silicon-containing compound stressor to form a silicide region. The silicon-containing compound stressor includes SiGe or SiC.
Abstract:
A method of forming a silicided gate of a field effect transistor on a substrate having active regions is provided. The method includes the following steps: (a) forming a silicide in at least a first portion of a gate; (b) after step (a), depositing a metal over the active regions and said gate; and (c) annealing to cause the metal to react to form silicide in the active regions, wherein the thickness of said gate silicide is greater than the thickness of said silicide in said active regions.
Abstract:
A fully silicided gate with a selectable work function includes a gate dielectric over the substrate, a first metal silicide layer over the gate dielectric, and a second metal silicide layer wherein the first metal silicide has a different phase then the second metal silicide layer. The metal silicide layers comprises at least one alloy element. The concentration of the alloy element on the interface between the gate dielectric and the metal silicide layers influence the work function of the gate.
Abstract:
A semiconductor device and method for fabricating a semiconductor device for providing improved work function values and thermal stability is disclosed. The semiconductor device comprises a semiconductor substrate; an interfacial dielectric layer over the semiconductor substrate; a high-k gate dielectric layer over the interfacial dielectric layer; and a doped-conducting metal oxide layer over the high-k gate dielectric layer.
Abstract:
A gate-last method for forming a metal gate transistor is provided. The method includes forming an opening within a dielectric material over a substrate. A gate dielectric structure is formed within the opening and over the substrate. A work function metallic layer is formed within the opening and over the gate dielectric structure. A silicide structure is formed over the work function metallic layer.
Abstract:
A semiconductor device and system for a hybrid metal fully silicided (FUSI) gate structure is disclosed. The semiconductor system comprises a PMOS gate structure, the PMOS gate structure including a first high-κ dielectric layer, a P-metal layer, a mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-κ dielectric layer, the P-metal layer and a fully silicided layer formed on the P-metal layer. The semiconductor system further comprises an NMOS gate structure, the NMOS gate structure includes a second high-κ dielectric layer, the fully silicided layer, and the mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-κ dielectric and the fully silicided layer.
Abstract:
A method of forming a semiconductor structure includes providing a semiconductor substrate; forming a gate dielectric over the semiconductor substrate, wherein the semiconductor substrate and a sidewall of the gate dielectric has a joint point; forming a gate electrode over the gate dielectric; forming a mask layer over the semiconductor substrate and the gate electrode, wherein a first portion of the mask layer adjacent the joint point is at least thinner than a second portion of the mask layer away from the joint point; after the step of forming the mask layer, performing a halo/pocket implantation to introduce a halo/pocket impurity into the semiconductor substrate; and removing the mask layer after the halo/pocket implantation.