Abstract:
A lens module of an imaging device includes a lens-barrel plate, a shutter plate and at least one elastic device. The lens-barrel plate includes at least one guide post, which is vertically arranged on the surface of the lens-barrel plate. The shutter plate includes at least one groove, which facilitates movement of the guide post in the groove. Each elastic device corresponds to an associated guide post and groove. Accordingly, the elastic device is compressed when external force is exerted on the lens-barrel plate and the shutter plate, and the elastic device recovers to separate the shutter plate from the lens-barrel plate when the external force is removed.
Abstract:
A method for cutting a nonmetal material is provided. The method includes steps of (a) generating a tension stress on a surface of the nonmetal material by exerting a bending stress thereon; (b) providing a thermal effect along a path direction on the surface, wherein the thermal effect grows along a direction opposite to the path direction; (c) providing a first cryogenic effect in a first incident direction along the path direction; and (d) providing a second cryogenic effect in a second incident direction along the path direction, wherein a crack along the path direction on the surface is formed as a result of the tension stress, the thermal effect, and the cryogenic effects therealong for cutting the nonmetal material.
Abstract:
A Ge epitaxial layer is grown on a silicon substrate with a patterned structure. Through a cyclic annealing, dislocation defects are confined. The present invention provides a method for manufacturing a high-quality Ge epitaxial layer with a low cost and a simple procedure. The Ge epitaxial layer obtained can be applied to high mobility Ge devices or any lattice-mismatched epitaxy on a photonics device.
Abstract:
A Ge epitaxial layer is grown on a silicon substrate with a patterned structure. Through a cyclic annealing, dislocation defects are confined. The present invention provides a method for manufacturing a high-quality Ge epitaxial layer with a low cost and a simple procedure. The Ge epitaxial layer obtained can be applied to high mobility Ge devices or any lattice-mismatched epitaxy on a photonics device.
Abstract:
An array substrate includes: a base having an active region and a peripheral region adjoining to the active region; a plurality of signal lines disposed on the base; and at least one repair structure disposed on the peripheral region and having at least one first repair line and at least one second repair line having a first sub-line and a second sub-line. The first sub-line is located between the first repair line and the second sub-line. The signal lines have a plurality of groups; the first repair line crosses over at least two of the groups of the signal lines; and at least one of the groups of the signal lines is crossed over by only one of the first sub-line and the second sub-line.
Abstract:
An antenna is disclosed, which comprises: a substrate with a first surface and a second surface; a first radiation unit, disposed on the first surface; an insulating unit, disposed on the first surface on top of the first radiation unit; a first feed point, formed on the second surface and electrically connected to the first radiation unit; a grounding unit, disposed coplanar and connected with the first radiation unit; a first gap, formed between the first radiation unit and the grounding unit; and a second feed point, formed on the second surface and electrically connected to the grounding unit; wherein, as the second surface with the two feed points disposed thereon is adjacent to at least a metallic component and the radiation units are disposed on the first surface, the radiation units do not directly face the metallic component and thus prevent the same from being interfered by metallic shielding.
Abstract:
A solar power converting package includes a power storage unit, a power detecting unit coupled to the power storage unit, a power converting unit coupled to the power detecting unit, and a molding body enclosing the power storage unit, the power detecting unit and the power converting unit.
Abstract:
A dual-band antenna is disposed on a substrate having an antenna-mounted surface. The dual-band antenna includes a first radiating unit, a second radiating unit, and a feeding terminal. The first radiating unit is disposed opposite to the antenna-mounted surface of the substrate, and at least has a first side, a second side and, a third side. The first side is opposite to the third side, and the length of the first side is not equal to that of the third side. The second side is connected to the first side and the third side. The second radiating unit is connected to the first side of the first radiating unit. The feeding terminal is connected to the third side of the first radiating unit and the antenna-mounted surface of the substrate.
Abstract:
A structure of dual symmetrical antennas adopted on a broadband product to operate within 2.0 GHz˜5.8 GHz, comprises a PCB, two first trapezoid antennas symmetrically aligned with one of parallel sides thereof on a surface of a PCB, and two second trapezoid antennas symmetrically aligned with each other with one of parallel sides thereof on another surface of the PCB opposite to the first trapezoid antennas, wherein the first trapezoid antennas and the second trapezoid antennas simultaneously enable the broadband product to operate at both a first frequency band and a second frequency band, and the second frequency band overlaps a part of the first frequency band.
Abstract:
A data slicer includes an error bit predictor, a DC level compensator, a co-channel detector, and an output device. The data slicer generates four bytes according to four slicing levels respectively. The four slicing levels are a DC level, a level generated by adding a predetermined offset to the DC level, a level generated by subtracting the predetermined offset from the DC level, and a compensated level generated by the DC level compensator. The co-channel detector determines if the compensated level has the co-channel interference. The output device generates an output byte according to indication signals generated by the co-channel detector and the error bit predictor and the parity check of the four bytes.